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FOREWORD 

TRACE was conceived in August 1961,   to meet the Aerospace Corporation 

requirements in the fields of satellite tracking and system design.     Although 

under continuing development,   the program has been used extensively in post- 

flight orbit determination and tracking system analysis. 

The present report is the first "complete" description of the program; the 

previous partial descriptions issued in March and December 1962 are now 

obsolete and should be discarded. The information herein should be suffi- 

cient for most   users  of the program. 

TRACE was designed by M.   Bennett,   R.   J.   Mercer,   D.   Morrison, 

L.   Sachnoff,   and C.   C.   Tonies;  the principal contributors to the program 

include the originators and D.   A.   Adams,   C.   Christensen,   D.   Groves, 

K.   Hubbard,   S.   McDonald,   J.   Ostlie,   and A.   Skulich. 
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ABSTRACT 

TRACE is a multiple-purpose satellite orbit-determination program for the 

IBM 7090 computer.    Its applications include:    (1) prediction - the generation 

of a satellite trajectory and associated ground trace and station sighting data; 

(2) orbit determination - estimation of trajectory parameters,   station loca- 

tions,   and observational biases,   so as to best fit a set of observations; and 

(3) error analysis - estimation of the potential accuracy attainable by a 

tracking system,   given the station locations,   the data types,   rates and 

quality,   the uncertainties in the model parameters,   and the specifications 

of the nominal orbit.    The report contains the objectives of the program, 

some theoretical foundations,   the equations and methods employed,   the struc- 

ture of the program,   and complete instructions for its use. 
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4 
1. 2 TRAJECTORY GENERATION 

Basic to all applications of TRACE is the space vehicle trajectory. A tra- 

jectory is defined by a set of initial conditions together with the differential 

equations of motion which reflect the earth's gravitational and atmospheric 

forces and those of other bodies affecting the vehicle's motion. In TRACE, 

the trajectory is generated in an inertial rectangular coordinate system by 

a step-by-step numerical integration. (Between the integration pointc, Lhe 

trajectory is  defined by an interpolation formula. ) 

1.2.1 Trajectory-Related Output 

Trajectory-related output may be obtained from any application of TRACE 

at any reasonable set of time points,   as well as optionally at the points of 

equator  crossings,   apogee,   and perigee.     Any or all of three blocks of in- 

formation may be selected for output at print times.     They are: 

a. Basic trajectory information including position and 
velocity components,   spherical coordinates,   ground 
trace,   and altitude-.   ffä-,/?^äKgdK^ 

.- :-v -• 
:om_ b. Conic section elements cömput'ed.Trom" the  components 

of position and velocity':* 
-    " v- ;" y; ,'^- 

c. Partial derivatives  of position and velocity components 
with'respect to initial conditions: and differential  equation 
parameters.   (These,,quantities are  necessary for the 
other applications, of TRACE but have also'beeh found 
useful in simple, traject'ory'generation where effects  of 
initial condition     or parameter errors are  sought. ) 

1.2.2 Required Input •=    ;     .•*''- •'" •"• ' 

a. Epoch - the date  and time of injection. 

b. Initial conditions of the orbit.     Three types are acceptable: 
(1) inertial  rectangular components  of position and velocity, 
(2) spherical coordinates for position,   together with the 
flight path angle,   azimuth,   and magnitude of the velocity 
vector,   and (3) elements of a conic  section.     In (2),   either 
the  right ascension (inertial)  or the longitude (referred to 
Greenwich) may be specified. 
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c. The drag parameter CQA/W and a choice of atmosphere 
model.     (The ARDC  1959 model is used unless otherwise 
specified. ) 

1.2.3 Optional Input 

a. Print times and output block indicators.     (Trajectory- 
related output is optional for any of the applications of 
TRACE;  in the  simple trajectory generator function,   this 
output is presumably the purpose of the  run. } 

b. If partial derivatives  with respect to certain trajectory 
parameters are  required,   these parameters must be 
specified. 

c. Many model constants  and numerical integration param- 
eters have been assigned standard values.    All of them 
may be  changed by optional input. 
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1. 3 RADAR DATA GENERATION 

Simultaneous with trajectory generation,   TRACE can produce listings  of 

satellite rise and set times,    radar coordinates,   and many related quantities 

for up to 50  radar stations,     provided,   of course,   that the location and charac- 

teristics of the  stations  are  supplied.     During visibility periods  (determined 

by the program),   the  desired output quantities are computed in chronological 

order and  stored in the memory until capacity'is- reached,   at which point the 

information is  sorted by station and output.     The process is  repeated as 

necessary to complete  the listings.     Optionally the eight quantities,   through 

Q in the following paragraph,   may be written on a magnetic tape  in chron- 

ological order in the format of tracking input data. 

The quantities to be  output (in the  station listings  or on the data tape) are 

selected by input,   and include  range,   azimuth,   elevation,   range  rate, 

doppler data (P,   O,   P and Q).   azimuth rate,   elevation rate,   range accel- 

eration,   mutual visibility (up to eight stations only),   latitude,   longitude, 

surface   range,   altitude,   doppler rate,   look angle,   and standard deviations 

of the six observational quantities .R,   A.   E,   R,   A,   E. 

1.3.1 Required Input 

a. Station location data. 

b. Control  information for each station,   such as the minimum 
and maximum elevation angles,   maximum  range  of visi- 
bility,   the  interval (during visibility periods) at which 
computations are to be made,   and the  start and stop times 
for visibility testing and output. 

c. The list of output quantities desired from each station. 

"Radar station" should be interpreted here generally as a point on the 
surface  of the  earth associated with satellite observations.     It could be 
a camera  location,   or the  location of a point observed from the  satellite. 

Optionally,   random noise may be added to the  same eight observational 
quantitie s. 

1-4 
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1. 3. 2 Optional Input 

a. Control flags to indicate that only rise and set times are 
to be generated,   and that the generated observational 
quantities are to be listed chronologically on a magnetic 
tape in the format of input data. 

b. The mean and standard deviation of normally distributed 
random noise to be added to the generated observational 
quantities. 

c. The computed value of elevation is altered to account for 
atmospheric refraction.    A numerical coefficient may be 
changed,   or set to zero if no correction is desired,   by 
optional input. 

d. Uncertainties in the initial conditions of a trajectory will 
be reflected in uncertainties in generated observational 
quantities.    A variance-covariance matrix of initial con- 
ditions must be input if the computations of the standard 
deviations of observational quantities are selected. 
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1.4 TRACKING 
  

Approximately,   TRACE can determine the trajectory that best fits a set of 

observations. 

1.4. 1 The Tracking Problem 

More precisely,   the trajectory  of a space vehicle depends upon the initial 

conditions of the motion and the   differential equation parameters    which 

appear in the equations of motion.      From the trajectory,   one may compute 

at the observation times the expected values of the recorded observations. 

This computation further depends  upon the locations of the radar stations 

and biases in the observations.       Thus,   the computed "observations" are 

functions of parameters of four   types:    initial condition,   differential equation, 

station,   and observation parameters.    The tracking problem is to solve for 

the set of parameters that minimizes the differences between the computed 

and measured observations. 

Therefore,   TRACE is able to solve for such quantities as the ballistic co- 

efficient (a differential equation parameter) of the vehicle,   the location of an 

observing station,   and the presence of observational or time biases in the 

data reported by a station,   in addition to the usual initial condition param- 

ete'rs.     (In practice,   one solves   only for a selected set of parameters rather 

-' •' {?•'-.. «•; * •   th'an'all possible parameters. ) 

•   e- <£-»=- 

•x>   . ; ".'  • ? ' 
a *•**:'• ••>>» &K 

«*?.. 

1.4.2 The  Tracking Problem   Solution 

The solution is an iterative process.    Initial estimates of each of the param- 

eters must be provided.     Based   on these estimates,   the  "computed obser- 

vations" and their partial derivatives with respect to the parameters are 

formed,   the normal matrix is  accumulated,   and measured and computed 

observations are differenced,   forming the "residuals."    The residuals are 

weighted by a combined  scale   and   quality factor,   checked against an editing 

criterion,   and the  sum  of the   squares of the weighted residuals  is accumu- 

lated.     When all of the observations have been so treated,   a correction to 
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the set of parameters is computed and applied,   and the process is repeated. 

The root mean square of the weighted residuals provides the measure of 

convergence of the process. 

The solution parameters,   which are derived from observations containing 

random errors,  must be regarded as estimates of the true parameters. 

Under certain conditions (that the observational model is correct,   that the 

observational errors are independently distributed with mean zero and 
2 - 1 variance  cr   ,   and that the weighting factor used is   cr     ) the inverse of the 

normal matrix is the variance-covariance matrix of the parameters.     Thus 

the solution process provides an estimate of the uncertainties in the derived 

parameters. 

Two types  of conditions may be imposed upon the  solution of the minimiza- 

tion problem:    bounds upon the magnitude of the computed corrections may- 

be given,   and linear constraints  among the  corrections may be  specified. 

The former is used to assure covergence,   and the latter may represent 

physical requirements,   such as  the fact that the difference in the latitudes 

of two stations  is accurately known. 

The output includes the  rms  of the  residuals  (optionally the  residuals may 

also be  reported by station) for the current iteration,   the  current and cor- 

rected values  of the parameters,   the  rms  residual that is predicted for the 

next iteration,   and the  standard deviations of,   and the correlations among, 

the parameters (obtained from the variance-covariance matrix). 

Further optional output includes the individual residuals,   partial derivatives 

of observations with respect to parameters,   and crajectory information at 

observation times. 
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1. 4. 3 Required Input 

a. The list of initial condition,   differential equation,   station 
location,   and observational parameters for which the pro- 
gram is to solve,  an initial estimate of each,   and a bound 
(if necessary) upon the magnitude of correction that is to 
be permitted 

b. Locations of all observation stations 

c. The observational data.    Many types of data are acceptable, 
but eight of these (range,   azimuth,   elevation,   range rate, 
and the four doppler quantities,   P,   Q,   P,   Q) are regarded 
as basic;  the other data types are first converted to the 
above set. 

d. Weighting factors for the basic data types for each observ- 
ing station 

1.4.4 Optional Input 

a. The maximum number of iterations in the differential 
correction process may be specified. 

b. A refraction correction is applied to elevation observations 
A coefficient in this correction may be modified,   or set to 
zero,   by optional input. 

c. The  names of up to nine  stations for which residuals are to 
be reported may be input. 

d. If linear constraints among the parameters  exist,   a con- 
straint matrix must be input. 

e. The  level of residuals above which data points  are to be 
discarded may be input. 
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1. 5 STATISTICAL ANALYSIS 

As already mentioned,   under certain assumptions the inverse of the normal 

matrix contains information as to the uncertainties with which parameters 

are determined by a tracking system.    This aspect of orbit determination is 

exploited in TRACE to provide its system analysis capability.     (Note that the 

normal matrix involves only partial derivatives,   not residuals,   and thus the 

performance of a system can be analyzed without recourse to actual 

observations. ) 

1.5.1 Assumptions 

The assumptions are that observational errors are independently distributed 
2 -1 

with mean zero and variance o"  ,   and that tr       is used as the weighting factor 

in forming the normal matrix.    Under these conditions,   the inverse of the 

normal matrix is a variance-covariance matrix of the parameters being 

estimated. 

Insofar as these parameters are differential equation or radar parameters, 

their variances and covariances satisfactorily describe their uncertainties. 

However,   the uncertainties in the motion of a vehicle are not adequately 

described by the variances and covariances of the initial conditions and 

differential equation parameters of the trajectory.    Rather,   trajectory un- 

certainties are better reported in terms  of orbit plane  coordinates,   or conic 

section elements,   or such related quantities as period,   apogee,   and perigee 

distance.    Cartesian and spherical coordinate variance-covariance matrices 

are also available. 

A further sophistication arises from the assumption that the values of some 

of the parameters used in the calculations,   but not being estimated by the 

differential correction process,   are also uncertain,   thereby inducing un- 

certainties in the differentially corrected parameters and in the trajectory. 

(This is a very common situation; most tracking programs do not solve for 

basic constants and station locations,   but their current values must be some- 

what uncertain.)   Such parameters are referred to as "Q-parameters" in 
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distiction to "P-parameters, " which are those being estimated by differential 

correction.    TRACE will simultaneously report P-parameter and trajectory 

uncertainties with and without Q-parameter effects.     The matrix of derivatives 

of the P-parameters with respect to the Q-parameters can also be output. 

1.5.2 Mechanics of Application 

The mechanics of this application of TRACE are as follows:    as the trajectory 

is generated,   the program determines  (and outputs) periods of visibility from 

each station.    At the prescribed interval,   while the vehicle is visible,   the 

partial derivatives of the observations with respect to the P- and Q-parameters 

are computed,   weighted,   and accumulated (in double precision) into the normal 

matrix.    At the specified output points,   the desired covariance matrices are 

computed and output,   along with such trajectory-related quantities as may 

have been selected. 

1.5.3 Required Input 

a. The list of up to 30 parameters,   of which up to  15 may be 
• •" •*•'•*    W trajectory parameters 

f£ .i     -^ -^ 

* -^k- '"I- 0' b. The set of output times and the list of output variance- 
'.1*.2      •" covariance matrices desired.     Optionally,   only the  standard 

£*•  . "     I deviations  (square root of the diagonal elements) can be 
"* . printed. 

. • c. Station location information 

d. Control information,   for each station,   such as the minimum 
and maximum elevation angles,   maximum  range of visibility, 
the interval (during visibility periods) at which computa- 
tions are to be made,   and the start and stop times for 
visibility testing and output 

e. The list of data types reported by each station.     Eleven 
types are possible:    range,   azimuth,   elevation,   range rate, 
the four doppler quantities (P,   Q,   P,   Q),   argument of the 
latitude,   the orthogonal angle measured from the  equator 
to the position of the vehicle in the plane  containing the 
radius vector and the vector normal to the orbit plane,   and 
geocentric distance.     (The last may be used to simulate 
altitude observations,   as height and geocentric distance 
have  a nearly constant difference. ) 

f. Standard deviations  for each type of data 
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1.5.4 Optional Input 

a. If Q-parameter effects are desired,   each parameter must 
be designated as being of type P or Q. 

b. An input covariance matrix is  required for the  set of 
Q-parameters. 
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SECTION 2 

THEORY 

2. 1 INTRODUCTION 

Section  1  contains general descriptions of the various applications of TRACE 

to orbit determination problems.     In Section 2,   more precise mathematical 

statements of these problems are provided and the  capabilities of TRACE 

are discussed.     The emphasis in this  section,   however,   is upon theoretical 

aspects and functional relations; the particular equations and methods used in 

the program are  set forth in Sect:'-     °       Again,   the applications are treated 

in the order of increasing  scope,   but not with uniform  thoroughness.     Topics 

that are possibly less familiar have been emphasized,   whereas more familiar 

problems,   such as the   numerical solution of differential equations,   have been 

largely ignored. 
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2. 2 THE TRAJECTORY AND ITS PARTIAL DERIVATIVES 

The trajectory of a space vehicle is defined by the (differential) equation 

of motion 

X=-i^ + F (1 

together with the initial values   X(t   ) = X    and X(t   ) = X   .     Here.    X  is a 0 o' o o o 
3-vector  of rectangular components (x,   y,   and z) of position in an inertial 

coordinate system,   a dot represents a time derivative,   r =   |X|   = 
2 2        2  l/2 (x    + y    + z   )        ,   u.  is the gravitational constant (GM) of the earth,   and F 

(a vector) represents the perturbing accelerations upon the vehicle. 

One application of TRACE is merely to solve this differential equation.     The 

solution  X(t),    X(t)  is generated numerically at time points   t = t. (j = 0,    1, 

2,   .   .   . ) and defined at t ^ t. by an interpolation formula. 

The more sophisticated applications of TRACE require the sensitivity (as 

expi 2ssed by partial derivatives) of the trajectory to its initial conditions 

and other    parameters. 

Obviously   X   is a function of  |x   which is an example  of a ''differential equation 

parameter."    Other such parameters (ballistic coefficients,   oblateness 

coefficients,   etc. ) may appear in F.     Furthermore,   the  solution depends  on 

the initial conditions   X     and   X   ,   which in turn may be computed from "initial o o if 

condition parameters. "    If we let vectors of these types of parameters be 

represented by  ß   and   a   respectively,   we may show the functional relations 

in Eq.   (1) as 

X = --^y + F(X,X,ß,t) (2] 
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t 
or 

with 

X = X(X,X,ß,t) 

X(to) = XQ(a) X(to) = XQ(a) :2a] 

(F  and  X  will be functions of X  whenever drag forces are present. )    The 

dependence of the solution upon the parameters can be indicated as 

X(t) - X(a,p,to,t) 

and similarly for   X(t).    (In fact,   the solution can be given by the integral 

equations 

X(a,ß,to,t) = XO(Q) +  f  X[X(a,p,to,t'),   X(a, 0, tQ, t" ), (3, t" ] dt" 
Jo 

and 

X(a,p\to,t) = XQ(a) + I    X(a,p,t  ,t' ) dt' 
J  o 

= X  (a) + (t - t  )X (a) o o     o 

•t   rt 
+  ft   ft    X[X(a,ß,to,t"),   X(a,ß,to,t"),   P.f]  dt"dt' 

J or o 

X(t) =   Xo(a)  + (t - to)Xo(a) 

+  [t(t-t")X[X(a)ß,to,t"),   X(a,ß,to,t"),   ß,t"]dt" (3 
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which are hardly suitable  for computations,   but which do show thf   functional 

relations more explicitly. ) 

W 
ax   ax ax e are now in a position to show how partial derivatives -r—,  —-x-,   and  —— K v 3a     3ß at 3V which measure the sensitivity (to first order) of solutions to variations 

in the trajectory parameters a, (3, and t , are obtained. (These partial 

derivatives are extensively used in other applications of TRACE, but are 

also often of interest in their  own right. ) 

If we differentiate  Eqs.   (2) and (2a) with respect to  a,    interchange orders 
i\ "V" 

of differentiation,   and use the notation   X     for  -r—,    we  obtain a da 

ax 
a a 

ffl.öF 
x\      3/    ax 

ax    aF  ax 
3a       dx   3a 

or 

X     = a 
3 

3X 
uX 

3 
aF 
ax X     f^X a    ax   Q A) 

ax ax 
with initial conditions   X   (t   )  - —r—   and   X   (t   ) = ——.     (See  Paragraph 2.2.1). a    o 3a a    o 3a »     r 
Equation (4) is called a "variational equation. "    It is obviously a  second-order 

linear vector differential equation whose solution is the vector of partial 
3X derivatives   X     = -—   of the components of position with respect to the initial 

a • 3X condition parameter   a.     In the course  of solving  Eq.   (4),    X     = ——   will also r ö      ^ a      9a 
be  obtained.     Such an equation can be derived for each initial condition 

parameter. 

One can also obtain Eq.   (4) by differentiating the integral Eq.   (3) with respect 

to   a, 

X X  (t   ) + (t - t  )X (t   ; a    o o     a    o 
•/* 

(t -1")(|2 |^+li I^Vii" \3X   3a       gx    3a (5) 
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and noting that Eq.   (5) corresponds to Eq.   (4) in exactly the same way that 

Eq.   (3) corresponds to Eq.   (2).    Reference  1,   which initiated the authors' 

use of variational equations,   follows the integral formulation,   but is more 

concerned with interplanetary applications. 

The variational equations for initial time   t     are of the same form,   but with 

different initial conditions 

X 9X\"     3 I     dX o      L       \   r   ' 
X+     + i? X 

J   lo      3X     'o 

Xt   (to) =   -XQ(a) 
o 

X,   (tQ) =  -X   (a) 

These are derived by differentiating the integral equation (Eq.   3),   which best 

shows the dependence upon   t   ,   with respect to t   . r • o r o 

The variational equations  for a differential equation parameter   ß   are 

X 8XV" r3/+ ax 
9F   • 9 F 

Xß+i*Xß + 3ß~ 

X
P<lo> = W = ° 6) 

* 

As a source of partial derivatives,   variational equations give results that are 

more accurate than analytic derivatives (which assume two-body motion),   and 

are more rapidly generated than difference quotient approximations.     The 
9F 

and greater  speed derives  from  the  fact that the terms    TJVM" ~T ) + "av 

of Eq.   (4) are identical in all the variational equations; only the non- 
3F homogeneous term   -^-   of Eq.   (6) varies with the particular parameter. 

A further advantage of the variational equations is that they permit the use of 

the difference quotient technique as a checking device.     The two methods 
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must produce partial derivative estimates that are in substantial agreement; 

the lack thereof would indicate the presence of a blunder.    While the test is 

hardly foolproof,   it is valuable and should rot be overlooked. 

2. 2. 1 Derivative with Respect to a "Vector 

The indication of a derivative with respect to a vector is a very convenient 

notational device for representing partial derivative matrices and chain 

rule differentiation.     The following conventions are observed throughout: 

a. A ''vector" is a column vector; a row vector will be 
described as such or denoted as a transposed vector. 
Example:   (x,   y,   z) = X^. 

b. The derivative of a vector with respect to a scalar is a 
vector. 

c. The derivative of a scalar with respect to a vector is a 
row vector. 

d. The derivative of a vector with respect to a vector is a 
matrix. 

Example:   If  F is a vector function of a vector variable   X, 

then —^  is the matrix of partial derivatives whose i - j 

element is   „IT • 

'Tote the neatness of the following example:   Suppose  X(t) is the vector 
,T 

1VL"   "2V""   •   •   •   •   V c,(t),   x?(t),   .   .   .   ,   x  (t)]      and   y   is a scalar  function of  X;    y = f[x  (t), 

x2(t),   ....   xn(t)l = f[X(t)].    Then 

dt       9x       dt        9x       dt       '   '   '       3x       dt    " 9X    dt ' K   ' 

Here -i? is by convention a row vector,   -r-  a column vector,  and the 

juxtaposition of the two indicates the desired scalar product. 
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2. 3 BASIC ORBIT DETERMINATION 

The basic orbit determination problem,   as outlined in Section  1.4,   is that of 

finding values for a set of parameters from an observational model so as to 

minimize,   in the sense of weighted least squares,   the differences between the 

measured observations and the corresponding quantities computed from the 

model. 

The model,   as constituted in TRACE,   includes the trajectory of the vehicle 

(and thus the initial condition and differential equation parameters),   the 

locations  of the observing  stations,   and constant bias errors in their instru- 

ments or their clocks.     In practice,   one determines values for only a selected 

subset,    P,    of the parameters of the model. 

The weighting factors are necessary to assign the proper relative significance 

to observations of different types and quality. 

The basic orbit determination problem may now be restated:   Given a set of 

n normalized observations (multiplied by an appropriate weighting factor^, 

which are  collectively denoted by the n-vector   O      (m for "measured"),   and m 
a model from which the  corresponding (similarly weighted) quantities   O     can 

be  computed as  functions  of parameters   P,   determine values of   P   so that 

MO      - O  (P) is minimized. 11    m c        " 

Suppose that an approximate  solution   P     is known.     (Approximate initial 

conditions will be available either from design information or preliminary 

orbit determination methods. )    We expand   O  (P)   in a Taylor  series to first 

order about   P     and obtain o 

O      -  O  (P)||2 =   MO      - O  (P  ) - A- AP||2 

m c       " ''    m co 

30 
to be minimized,   where   A =     —    is a matrix of normalized partial derivatives 

evaluated at  P - P  .     The partial derivatives,   with respect to trajectory 
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30c      DOc    OX parameters,   are computed from the chain rule formula      p    =     „    -^g 

where  -^5  is the matrix of solutions to the variational equations.     The matrix 
30c        aF 90c 
.v    and those  columns of  •   „    that represent derivatives with respect to 
oA d f 
station parameters are computed directly from geometrical relations. 

The differences,    O       (P   ) =  O       -  O   (P   ),    between the normalized observa- 
nce      o m CO 

tions and the corresponding quantities computed from assumed values   P 

are called "residuals"; they will be due  to the presence  of random observa- 

tional errors,   inadequacies in the model,   and incorrect values for the model 

parameter s. 

The above  statement of the weighted least squares   (WLS)   problem conceals 

the weighting  factors,   which could have been explicitly included in the 
l/2 

formulation as the elements of a diagonal matrix W        .     (This notation is 
1 / 2 T     l/2 chosen in order to simplify subsequent equations in which (W )    W =  W 

appears frequently. )    Then the quantity to be minimized would have been 
11      1 / 2 11 2 W        (O - A-AP)        .    with   O and   A   representing actual,   not weighted, 11 vmc MI> Tnc 1 & & » 

values.    Since  TRACE is restricted to independent observations  for which 

W   is diagonal,   we have  chosen (for the  sake of simplicity,   not deception) to 

include the weighting factors with the elements of   O and   A.     In Section 0 & mc 
2. 5 on statistical aspects,   the weighting matrix is discussed and displayed. 

It should be noted that the  solution of the  WLS problem does not produce "true" 

values for model parameters   —  it produces only "best fit" values.     Any 

further  conclusions of a  statistical nature regarding the WLS solution require 

additional assumptions  regarding the model and the character of the  random 

observational errors.     These topics will be discussed later. 

Inasmuch as the original nonlinear  WLS problem has been replaced by an 

approximate linear problem (that of finding a correction sector AP   so that 

I I O       (P   )  -  A • AP I I      is minimized),   we must not expect that   P =  P     + AP II mc     o o 
will be a solution of the original problem; rather,   an iterative process is 

indicated.      II O       (P   ) 11   measures the degree to which an orbit,   computed 1'    mc     o   " 
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t 
from the current values   P     of the  parameters,   fits the  observations. o v 

O =       O       (P   )  -  A'AP       is an approximation (based upon the linearity M    rncM        M    mc     o " ^^ r ; 

assumption) to the value of   II O that would be obtained by replacing P 11     rnc II 7 f b       0 

with   P     +  AP.     (The  superscript   p  means  "predicted. ")       In a well-behaved o 
iteration,   the  observed       O should follow the predicted    11 O        ||,    and 11    mc ii f ,i    mc i i 

relative agreement of the two is a measure of convergence of the process. 

The  correction vector   AP   is  found as the solution of the linear  system 

(ATA)AP =  AT0 . (9) 

This may be  shov/n in various ways,   of which two proofs follow. 

Proof  1 

Let 

f(AP) =   II A- AP  -  O        II2  = (A- AP  -  O       )T(A- AP  -  O mc" mc mc 

Differentiate   f(AP)   with respect to   AP.     The  result is 

:) 
3f       =2(ATA-AP- AT0       ^T 

a(AP) \ mc 

which must be  zero if   AP   minimizes   f(AP). 

Proof 2 - 

Let 

ATA- AP = AT0       .     Then for any   AP' *   AP mc 
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f(AP') =   II A- AP -  O + A(AP'   -  AP)||2 

mc 

T, 
=   || A- AP - O       M2 + 2[A- AP - O      li[A(AP/   - AP)] 

' ' mc '' L mcJ 

+  ||A(AP'   - AP)||2 

= f(AP) + 2(A
T

A • AP - AT0       )T(AP'   - AP) 

+  ||A(AP'   -  AP)||2 

= f(AP) +   ||A(AP'   -  AP)||2 

>f(AP) 

from which we see that  AP-minimizes   £(AP). 
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2. 4 CONSTRAINED AND BOUNDED LEAST 

SQUARES SOLUTIONS 

Two distinct types of restrictions upon the solution of the weighted least 

squares problem may be necessary or desirable.     Constraints among the 

parameters may be a part of the physical problem,   and bounds upon the 

magnitude of the corrections may be computationally desirable. 

2. 4. 1 Constraints 

An example of a physical constraint among parameters would be precise 

knowledge of the relative locations of two nearby radar stations.       If their 

aciaal locations were among the parameters  P in a differential correction, 

it would be important to constrain the corrections   AP   so that the radar 

relative locations were preserved.     This is accomplished in TRACE by intro- 

ducing linear  constraints in the form 

AP = B- AP' f c (io; 

where   B  is a rectangular matrix and   AP'   is a reduced set of independent 

parameters; by solving the WLS problem in terms of  AP' ;   and by using 

Eq.   (10) to obtain the constrained corrections   AP.     Solving the  WLS problem 

in terms of   AP'    requires  the minimization of       A* AP  - O "   subject -i r i mc" 
to the constraint Eq.   (10),   or therefore the minimization of   ||A*(B* AP'   + C' 

- O       II2 =  ||(AB)-AP'   - (O        + AC) 11   .     The solution of the linear system 
mc" " mc ' 

(AB)T(AB)AP'   = (AB)T(0        + AC) (11 
' mc 

gives the  required minimum. 

2.4.2 Bounds 

Under  fairly common conditions,   such as inadequacies in the  observational 

model or a poor initial approximation   P   ,    the observed       O will fail to 1 r r o '     m c 

"Radar station may refer to any point on the surface of the earth associated 
with an observation. 
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mc' 

follow the predicted   | j Cr      ||   or may even diverge.    In the presence of such 

manifestations of nonlinearity,   it may be necessary,   in order to assure 

eventual convergence,   to solve the WLS problem at each iteration with a side 

condition bounding the magnitude of the correction vector   AP. 

If we refer to the reciprocals of the bounds   g.   collectively as the diagonal 

matrix G,    the restricted problem becomes that of minimizing   | j A • AP - O 

subject to the bounding condition   11 G • AP | j     < 1.     (If   | j G • AP 11 2 

,/Ap.f 
= 2_J -1   ^ 1»   then for each component   | Ap. j < g.. ) 

The constraint has,   in a two-parameter example,   a simple geometrical 

description.     The constrained problem is to find a minimum,   over all AP 

within the ellipse defined by  g     and  g?,    of the  surface   f(AP) =   11 A • AP - O 

(See Figure   1. ) 
mc 

AP 

'i APl 

Figure  1.    Two-Parameter Constraint Ellipse 
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I 

(An elliptic rather than circular region is used to account for the range of 

magnitudes of the various parameters. ) 

If the unconstrained solution is not within the ellipse    ||G«AP||     = 1,   then we 

invent a new function   F(AP) = f(AP) + Z||G-APM      to be minimized.     The 

minimum point  AP' (Z) is found as the  solution of 

(A1 A + zGTG)AP = AT0 (12 mc 

As   z   increases,   the minimization of F will require  smaller and  smaller 

values   AP'(z).    (More precisely,   it will be  shown that   ||G*AP'(z)||   is a 

decreasing function of z. )   in particular we can find,   by a search and inter- 

polation procedure,   a value z'   of z such that   11 G • AP' (z7 ) | j     =   1.     But for z' , 

the minimization of  F = f + z' \\G • AP'(z')||  = f + z'   is equivalent to mini- 

mizing   f, since they differ only by the  constant z' .     Thus we have  found the 

point   AP   (Z' )   v/hich minimizes   f (AP) along the bounding ellipse. 

We will also show that   f(AP'(z))  is an increasii.g function of z.     Thus,   any 

interior point of the ellipse corresponds to larger values of z and of f,   and 

therefore the constrained minimum point is on the boundary and is the 

solution   AP'(z' ) of   (A L A + z'GTG)AP = AT0 for which   ||G • AP'(z' )||2 =   1 

The monotonic decreasing character of   11 G • AP 11   as a  function of z is  shown 

as follows.     (Primes have been dropped throughout these proofs. )   If we 

differentiate 

(ATA + 7,GTG)AP(z) :-- ArO (13) 
mc 

with respect to z we obtain 

(ATA + zGTG)-^-(AP) 4 (GTG)AP = 0 (14! 
dz 
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or 

dz -(ATA + zGTG)~1(GTG)AP (15! 

This expression is needed in the equation for -=—    G • AP       ,   which will be dz 
shown to be negative for all  z > 0.    We have 

_d_ 
dz G- AP||2 = Z(APT)(GTG)(^ AP) 

- -2APT(GTG)(ATA + zGTG)" 1(GfG)AP (16) 

T T     - 1 Since (A   A + zG   G)        is positive definite for positive   z. 

4-||G- AP||2<  0 dz ' ' (17) 

T whenever   (G   G) • AP * 0. 

The monotonic increasing  character of  f[AP(z)]   is  similarly established by 

showing that, -s— > 0.   as follows: dz 

df  _      9f       d(AP) 
dz  ~  a(AP)       dz 

ATAAP -  AT0 -(ATA + zGTG)_1(GTG)AP 

= -2[(ATA + zGTG)AP - AT0 - z(GTG)AP |_ mc 
T T      -1      T (A1 A + zGxG)   '(G   G)AP 

(18) 
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But since   (A   A + zG   G)AP = A T0 mc 

^ = +2zAPT(GTG)(ATA + zGTG)"1(GTG)AP (19! 

rl f "T 
and T- > 0,   whenever (G   G)AP * 0. 

2. 4. 3 Solution of the  Linear System 

T T T The  solution of the linear  system   (A   A + zG   G)AP = A    O (and the inversion 
rj, ry IDC 

of the coefficient matrix  C = A   A + zG   G)   is accomplished by a special 

method akin to that known classically as the square root method.     (See 

Reference 2. )   It is a finite (noniterative) method,   applicable only to sym- 

metric matrices,   and is based on the  fact that a symmetric matrix can be 
T decomposed as a product of the form   C  = LDL      where   L  is a lower trian 

matrix with (-1) as diagonal  elements,   and  D is a diagonal matrix. 

In such a representation det (L) = ±1   and det (D) = det (C).     Therefore L. 

exists (and also has the  form  of L.) and  D has no zero elements     if C is non- 

singular.     Therefore two equivalent forms are 

(1) L/^L1)-1 = L'1C(L'1)T = D 

- 1 - 1  T    - 1    - 1 (2) C (L   L)   D   'L 

or 

(1')     SCST  =  D 

(2' )      C" l   = STD" lS where   S = L' ' 

- 1     T Thus we  see that the inversion of C and the  solution   AP'   = (C      )A    O 
T mc 

require matrices   S   and   D   such that   (1   ) SCS      =   D. 
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A bordering technique is used to find  S  and   D.    At the k      stage suppose 

that the k      order principal minors of S   and   D  have been found.     The (k + 1) 

order minors require the vector   W   and the scalar b so that 

(20; 

th /Ck       d\ st where   C     is the k      and I    ,_ j the (k + 1)       order minors of C.     It is 
\d G/ 

easily verified that the required   W   and  b  are 

W = SJDL^S. d 
k    k     k 

and b = a - W   d (21) 
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2. 5 THE STATISTICS OF ORBIT DETERMINATION 

In the process of orbit determination by the method of weighted least squares 

(WLS),   no assumptions regarding the statistics of the observational errors 

need be made.    In this case,   no statistical conclusions can be drawn from 

the results,   and the justifications of the method are  simply that it minimizes 

residuals (in the sense of WLS),   and that it works in practice. 

On the other hand,   if two common assumptions are made,   namely (a) that the 

observational errors   c.   are independent with mean zero and known variance 
2 

1 

a-. ,   and (b) that the multiplicative weighting factor associated with each 
1 .       .        - 1 observation is   o\    ,   then the  inverse normal matrix is a variance-covariance 

l 

matrix (often abbreviated "covariance matrix") of the parameters being 

determined.     This matrix depends only on the partial derivatives of the 

observations with respect to the parameters,   thus permitting statistical analysis 

of a tracking network in the absence of actual or simulated observations. 

The details are covered in the next few sections.    The relation of WLS orbit 

determination,   as in TRACE,   to other criteria (minimum variance and 

maximum likelihood) is also discussed. 

Z. 5. 1 The  Variance-Covariance  Matrix 

We assume   that the vector of measured observations   O       is the  true value 
m 

O   (PJ plus a random error   €.     Our linear approximation tu   O   (P)   is 
c     t c 

O   (P) =  O   (PJ + A- AP (22) 
c c      •_> 

and the  residual vector is 

O =  O       -  O   (P   ) = A- APt + e (23 
mem co t 
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where 

O (P   ) = the vector of computed quantities 

P    = an estimate of the true parameter vector   P o v t 

AP, = P   -  P 
t t ° 90 

A = the matrix of partial derivatives    .,-. 
o 

e = the vector of observational errors 

T with   E(e) =  0   and   E(e €     )  = Z,    a matrix representing the variances and 

covariances of the observational errors.     The  WLS problem  is the minimi- 

zation of   f(AP) =       O -  A* AP        ,    wherein each component of   O and 1'    mc                                                                                                 mc 
A« AP   has been multiplied by a prescribed weighting factor.     The solution, 

as noted before,   is   AP'   = (A   A)_1AT0 mc 

If we call the individual weights   w.   and collect them in a diagonal matrix 

W ,   then the above formulas,   with the weighting matrix now explicitly 

displayed,   become 

f(AP) =   ||W1^20 -Wl/2A-AP||2 (24' v " mc '' 

and 

AP'   = (ATWA)"lATWO (25) mc 

First,   we  show that   AP'    is an unbiased   estimate  of the true value   AP  .     (By 

this we mean that although   AP'    is a random quantity  since it depends upon 

the  residuals,   and thus upon the  observational errors,   the  expected value of 
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AP'    is the  true value   AP . ) 

AP'   = (ATWA)"1ATWO mc 

= (ATWA)"1ATW(A • AP   + 0 

= AP   + (ATWA)'1ATW« 

E(AP') = APt + E[(ATWA)_1ATW€] = AP (26; 

by the linearity of   E( • )   and on the assumption that   E(e) =  0. 

The vector   6P'   =  AP'   - AP    would be the deviation,   due to random errors, 

of the solution   AP' 

expected value  zero. 

of the solution   AP'    from the true value   AP • it has been shown to have the 

V/hat is  now the expected value of the  square of the deviations or of the product 
T of two components thereof?     The answers are  summarized in   E(6P' 6P'     ), 

which is by definition the  estimated  covariance matrix   C(P' )   of the 

parameters, 

E(ÖP' 6P'T)  =  E[(ATWA)" 1ATW(€ € T)WA(ATWA)_1] , (27) 

T in which we used  the   symmetry of the matrices   W   and   A    WA,   or 

C(P') = (ArWA)"1ATW Z  WA(ATWA)~l (28) 

This  is the  general form  of the  covariance matrix for a WLS estimate  of the 

parameters.     If,   however,    £ is diagonal,   as per the  first assumption,   making 
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it possible to choose   W = T.     ,   as per the  second assumption,   to be the 

diagonal weighting matrix,   then the very great simplification 

C(P' ) = (ATWA)~1  = (A1 Z_1A)_1 (29' 

is the result.     This is the basic covariance matrix calculated in TRACE. 

2. 5. 2 Minimum  Variance and Maximum  Likelihood Estimates 

In most instances of orbit determination from observations,   the method of 

weighted least squares (WLS) requires no statistical justification; indeed 

there is none.    Its aim is simply to produce fits and predictions of acceptable 

quality.    In other applications,   such as systems analysis and design,   statis- 

tical conclusions are  sought.     These are   commonly based on minimum 

variance (MV) or maximum likelihood (ML) estimations.     (MV is also called 

"Markov. ")    The  purpose  of this  section is  to describe  in general terms the 

assumptions governing MV and ML techniques and to relate them to the 

basically WLS method in TRACE. 

The MV,   or Markov,   estimate of  AP  is that linear unbiased estimate that 

minimises the diagonal terms (the variances) of the variance-covariance 

matrix of parameters P.     (See Reference 3.)    The formulas are 

AP^V   = (AT 2~1A)"1AT2"10 (30) MV       ' mc 

and 

C(PMV) = (ATZ'1A)-1 . (31) 

When   Z        is diagonal and is used as the weighting matrix  W,    the   WLS 

estimate and covariance matrix in   TRACE is also MV or Markov. 
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Nothing so far has been assumed about the actual form of the distribution of 

the random errors.    If a specific probability density function is assumed, 

then it is possible to seek the estimate that maximizes the probability or 

likelihood of the resulting residuals.    In the case of a joint normal (or 

gaussian) distribution of observational errors with covariance matrix  Z, 

the maximum likelihood (ML) estimate reduces to MV.    (In practice,   as 

Magness and McGuire note in Reference 4,   the gaussian assumption is always 

made,     Reference 4 also contains an excellent comparison of LS and MV 

estimation. ) 

In summary,   for uncorrelated observational errors,   the WLS estimate in 

TRACE is also MV; if the errors are further assumed to be normally distri- 

buted,   the estimate is also ML. 

2. 5. 3 Q-Parameters 

Observations are functions of many parameters,   including six orbital 

parameters,   differential equation parameters such as drag and spherical 

harmonic coefficients,   radar station locations,  and observational biases.    In 

principle,  all such parameters can be estimated,   given sufficient observations, 

and the  covariance matrix reports the accuracy with which they have been or 

could be determined.     In practice,   however,   only a  selected set of these are 

estimated.     There arises then,   both in actual orbit determination and in 

systems analysis,   the question of the effect on (a) the parameters   P   being 

estimated,   or (b) the trajectory itself,   of errors or uncertainties in the 

remaining parameters   O.     The treatment here follows that of Magness and 

McGuire in Reference 5. 

In TRACE,   the computation of Q-parameter     effects is restricted to the error 

analysis link FEIGN,   in which P-parameter and trajectory covariance matrices, 

with and without Q-parameter uncertainties,   are computed and printed.     The 

transformation from  orbital (initial condition) parameters to trajectory 

coordinates is covered in Section 2. 5.4. 
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Now the true  observation vector   O   (P  , Q  )   is a function of true but unknown 

values of both P and O and the measured vector is 

°m = °c(Pt'Q,' + t • <32> 

The vector of residuals,   in the "measured-minus-computed"  sense,   is 

O        = O      - O  (P   ,Q   ) mc m coo 

= Oc(Pt,Qt)+e-Oc(Po,Qo) . (33 

As in Section 2. 5. 1,   we assume a model for the true observations   O (P ,Q ), 

which is linear in a correction   AP    to an approximate value   P 
o 

O  (P ,Q ) = O  (P   ,Q ) + A   APA . (34) ctt cot pt 

But now in forming the "computed" quantities we are uncertain as to "he  true 

value  of the Q parameters and must use an approximate value   Q     in the 

calculations.     Thus   O (P   ,Q   )   is related to  O  (P   , Q.)   by c     o      o cot 

O  (P   ,Q   ) = O (P   ,QJ - A   AQ . (35) c      o       o cot q       t 

Collecting these results we have the following representation of the residual 

vector   O mc 

O        = A  AP4 + A  AQ+ + e . (36) mc p       t q       t 

(This equation could have been presented more briefly;  the longer presentation 

is used to make clear the sources of the terms in the residual vector. ) 
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Summarizing the notation above,   O      and  O     are the measured and computed m c r 

observations, 

P    and O     = estimates of the  true parameter values   P    and   0 o o r t t 

AP   - p       p    and   AC)    - Q    - Q t t o t t o 
ao ao 

O c A    and A    = the matrices - p     and     -    ,    respectively,   and 
o o 

e   = the vector  of observational errors with covariance 
matrix E(e cT) =  Z. 

The WLS problem  is  still that of minimizing   f(AP) =   ||W1/2(0 -A    • AP) 11 2 

and the  solution as before,   is, 

AP"   =  AP'   =  (AT
WA   )_1ATWO (37) \   p p/ p mc 

However,   the covariance matrix,   as would be expected,   is affected by the 

O-parameter uncertainties.     Thus 

AP"   =  (AT
WA   V1ATW(A   AP   + A   AQ    + €) 

\   p p/ p P       t q       t 

or 

6P"   =  AP"   -   AP    =  (AT
WA   \_1ATW(A   AQ4  +0 (38) 

t      \   p        p/        p q      t 

It is   seen immediately that if   E(AQ ) =  0   (meaning that unbiased estimates 

Q     of the Q parameters are being used) and   E(f) -  0,   then   E(6P" )  = C and 

AP"    is an unbiased estimate  of   AP .     The covariance matrix7C(P") = 
T -1 E(6P" 6P"     )   is,   by forming the indicated product,   choosing   W = Z 

(requiring uncorrelated observational errors) and taking the expected value, 

C(P") = (A
T

WA  )_1 + (A
T

WA  )"1ATWA  C(Q)ATWA  (AT
WA   V1 (39) 

\ p      p/        \ p      p/      p      q q      P\ P      p/ v 7/ 
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,T,   . 
where   C(Q) = E(AQ AQ   )   is the covariance matrix of the Q parameters. 

From the formula,   we see that the uncertainty in the estimate   P"   - P    + AP" , 

as represented by the covariance matrix  C(P" ),   is in two parts.     The first 
T -1 term is   C(P' ) = (A   WA  )     .   the covariance matrix (or uncertainty) in the 
P        P 

estimate P"   resulting from random noise in the observations.     The second 

term  contains the additional uncertainties in the estimate  of the  P parameters 

for having used uncertain values of the Q parameters in the process. 

Obviously   C(P" ) reduces to   C(P')  for C(Q)  =  0. 

The effect upon the estimate   P"   = P    + AP"    of an error (as opposed to an 

uncertainty) in a O parameter can also be predicted.     The estimate   P" (Q   ) o 
of P using the value   O     is & o 

P"(Q   ) = P    + AP" (Q   ) = P    + (A   WA   PA   WO       (Q   ) ( v    o' o x    o o      \   p        p/        p        mc     o v 40' 

and similarly,   using an "erroneous" or alternate value   Q 
I 

P"(Q,) = P    +AP"(Q,) = P    +(A
T
WA\

_1
A

T
WO      (Q.) r       o r       o    \  p      p/      p      mc    i 

(A
T

WA V 
V   P       p/ 
[ATWA  V !ATW o      \   p        p 

SO 
mc. O      (Q   ) +       '"^(Q,   - Q   ) mcx    o'        3Q 1 o' 

Then the difference in the estimates is 

41 

P"(Q   ) - P"(0Q) = 
<   P        P/        P        3°^ 

(O -Qo) ;42) 

2-24 



t 
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SO 
enters negatively into   O       (O = O      -  O   )   and since 

c m c     m C m c 
we have 

P"(0.) - P"(Q   ) =  |~-(A
T

WA  )_1ATWA 1(0,   - Q   ) (43) 
1 o       L \   P        P/        P        qJ     1 ° 

The content of the  square brackets is evidently the matrix of partial derivatives 
3P" 
8Q    ' o 

Now   C(P" ) can be  rewritten as 

('(;'")        (:-0')    •   (     ;\     I'^^f^ (M 

2. 5. 4 Parameter Transformations 

The covariance ma.trices C(P') or C(P" ) would normally include,   roughly 

speaking,   the uncertainties in the  orbital parameters due to observational 

errors and Q-parameter uncertainties.     The orbital parameters might be 

spherical coordinates at time   t   ,    for  example.     Quite evidently their un- 

certainties  are not very descriptive  of the resulting trajectory,   period, 

observational,   or  other related uncertainties;  hence the need for transforming 

the basic covariance matrices to other coordinate systems and reference 

times.     A common requirement,   for example,   is the  covariance matrix of 

satellite  position and velocity at time   t,   resolved into radial,in-track and 

cross-track components. 

Suppose that a  set of parameters X(t),   intentionally suggesting 
T X = (x,   y,   z,   x,   y,   z)     at time   t ^ t   ,   is  related to our P and O parameters, 

and that 

6X = f^5p + |rM <45> 
o o 
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This relation gives the first-order effect upon   X( P   , Q   ,   t) of variations 

SP and 6Q from the nominal values P    and O  .     If P    is an unbiased estimate 
o o o 

P"   of the true vector   P      so that   E(6P" ) = 0,   then the uncertainty in X(t),   due 

to random errors and Q-parameter uncertainties,   can be written 

,Y _   9X   C-D«   ,   9X 

3P 3Q o o 
6Q 

= J£-(A
T

WA  V1ATW(A  6Q +«) +4£- 6Q 
3p0\ p     p/     p       q 3QQ 

= (-^f^^>0+^KTWAp)-^W, . ,46, 

Since we are assuming that  E(€) = E(6Q) = 0 (the latter meaning that  Q     is an 

unbiased estimate of Q),   and that e and 60   are uncorrelated random variables, 
T we see that  E(6X) = 0   and that the covariance matrix  C(X(t))   is   E(6X 6X   ) or 

c(x,t)). («w j^j + (ß.. « |g:)c,Q,(«.. « ^j   . 
\o/ \o/ \      o o o/ xO O O ' 

(47) 

This is the general formula for transforming P- and Q-parameter covariance 

matrices into the covariance matrix for any set of related parameters.     Using 
•  T 

the  suggested interpretation   X = (x,   y,   z,   x,   y,   z)    ,   the partial derivates 
BX 3X and  -5-7=—   are either just the  solutions of the variational equations (insofar 
8P0 9Q0 
as    P     and      O     represent trajectory parameters),   or are computed from 

geometrical relations (in the case of observational parameters).     For other 

sets of parameters at time   t,   such as the  spherical coordinates   R(t) = 

(a,   6,   p,   A,   r,   v)    ,   the partial derivative matrices   _ p-     and     n     can be 
8R        3R    3X    ,      .     .     ..     .     .       9R  .   d  ,°       .     dW° 

computed as ~^p- = 7^7   Tp~  'and similarly tor •QQ~I>   wherein 
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I 
3R   . .     . , , #2^2,     2.1/2 —^   is computed  simply from  the equations,   such as   r = (x    + y     + z   ; , 

which relate the  spherical and cartesian coordinates at any time.    In practice, 

the covariance matrix is most easily obtained from   C(X(t))   by 

C(R<t»=(§K)c(X<t))(f*)T (48) 

» 
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SECTION 3 

EQUATIONS AND METHODS 

3. 1 COORDINATE SYSTEMS 

There are two coordinate systems employed in TRACE.     The earth-centered 

inertial system,   known as the "mean equator and equinox of date, " is basic to 

all the computations,   and position and velocity in this  system may be expressed 

in one of three types of coordinates (paragraph 3. 1. 1).     A station-dependent 

system has alt>o been introduced to facilitate  computations involving  radar 

observations and data scudies (paragraph 3. 1.2). 

3. 1. 1 Earth-Centered Inertial System 

The basic coordinate system is as follows: 

where 

Figure  2.     Earth-Centered Coordinate System 

0       is the center of the earth 

X       is a vector  from  0 in the equatorial plane directed to the 
vernal equinox at tCT,   0 hour GMT of launch date 

Y       is a vector from 0 perpendicular to X in such a direction that 
(X, Y, Z) is a right-handed system 

Z       is a vector from 0 perpendicular to the equatorial plane and 
directed north. 
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The position and velocity of a body at a point P may be expressed in rectangular 

or  spherical coordinates,   or in terms  of the classical (elliptic) elements of its 

orbit,   as   shown in the  following three paragraphs,   respectively. 

3. 1. 1. 1 Rectangular Coordinates 

P = P (x.,   y,   z,   x,   y,   z) where   x,   y,   z   are the components of position of the 

body in the X,   Y,   Z directions,   respectively,   and x,   y,   z are the components 

of its velocity in these directions. 

3. 1. 1. 2 Spherical Coordinates 

P =  P (a,   b,   ß,   A,   r,   v) 

where 

Figure 3.    Spherical Coordinates 

V = a vector  equal in magnitude and direction to the velocity of 
the vehicle at P 

a   -  right ascension measured from the X-axis,   positive eastward 

6   - geocentric latitude 

ß   = angle between V and the geocentric  vertical at P 
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3. 1. 1. 3 

A = azimuth of V from true north measured on a plane normal to 
the geocentric vertical 

r = magnitude of OP 

v = magnitude of V. 

Orbital Elements 

P = P (a,   e,   i,  Q, 

ORBIT PLANE 

PERIFOCUS DIRECTION 

EQUATORIAL PLANE 

X, y 

VERNAL EQUINOX 

PERIFOCUS 
DIRECTION 

Figure 4.     Orbital Elements 

In Figure 4,   P is the point on the  osculating conic,   which is described by 

a,   e,   i,   Q,   and UJ.     The position of P on this conic is determined by T and a 

value for the current time. 
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3. 1.2 

a = semi-major axis 

e  =  eccentricity = va     -  b   /a (b -  semi-minor axis) 

i   = inclination of the orbit plane 

M =  right ascension of the ascending node 

oj - angle between the direction of perigee and the line of nodes 

T = time in minutes from t    of last perigee passage. 

Station - Dependent System 

where 

Figure  5.     Station Coordinate System 

S  = the  location of the station at some time t 

a  = X   + a     + w  (t - t   ) 
g e g 

{   - the  geographic  longitude  of the  station 

a(T  = the   right ascension of Greenwich at time t 

UJ     = the  rate  of rotation of the earth 
e 

W      W     = the  axes  X and  Y,   rotated  through the angle a 
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3. 2 INITIAL CONDITIONS 

The parameters of the orbit may be input in any of the coordinates described 

in paragraph 3. 1. 1.     The trajectory computations require earth-centered 

inertial coordinates; the output includes spherical coordinates and elements. 

The formulae for the necessary transformations follow.     The date chosen to 

determine the X-axis is t   ,   zero hour GMT of launch date; the time t    at 
g o 

which the parameters are  specified is with reference to this date. 

3.2.1 Spherical to Rectangular 

x = r cos 6 cos & 

y = r cos 6 sin oi 

z = r sin 6 

x = v [cos o' (- cos A sin B sin 6 + cos 8 cos 6) - sin A sin B sin o-l 

y = V [sin ry (-cos A sin 6 sin 6 + cos B cos 6) + sin A sin 5 cos <yj 

z - v [cos A cos t  sin B + cos 6 sin 6] 

If longitude (4) is input instead of a,   a is computed as in paragraph 3. 1.2. 

In this case t   - t    = t   . 
g        o 

3. 2. 2 Rectangular to Spherical 

ry = tan     (y/x) 

6 = tan fz/ V x2   - yZJ 

8 = cos       [ (xx + yy + zz )/rv] 

A = tan^r, • r(x.y-yf. J |^y(yz  -   zy)  -  x(zx -  xz)J 

=   ^/x2  + y2  +  z2 

= V**l y2 + z2 

• 

t 
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3. 2. 3 Elements to Rectangular 

x = x  P + y  Q 
li)    x UJ    x 

y = x  P + y  Q 
u)   y i»   y 

z = x  P + y  Q 

x = x  P i- y  Q   ,   etc. 
IJ)     X U)    X 

where: 

P     = cos 0 cos  u: -  sin 0 sin CM cos i 
x 

P    = sin 0 cos u: + cos 0 sin u.cos i 
y 

P    = sin (M sin i z 

Q    =   -cos Osin UJ - sin 0 cos tr cos i 
x 

O    =   -sin O sin to + cos T cos üJ cos i 
y 

O     =   cos UJ sin i z 

p     = a(l-e   ), (semi-latus rectum) 

U     = gravitational constant 

n     ~ \\ u/a3 |   = mean motion 

M    = n(t -  T) = mean anomaly 

E     =  solution of (M = E -  e  sin E)  =  eccentric anomaly 

r     = a(l  - e cos E) 

x     = a(cos E - e) 

y      = -vl I apl    sin E 

x     =   -   JJ     '       sin E 
u> r 

u 

y      =   -^—£—  cos E 
0) 
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(These formulae are for the ellipse; if the conic is a hyperbola (e > 1),   E is 

the solution of M = e sinh E - E; and sin E and cos E above are replaced 

by sinh E and cosh E. ) 

3.2.4 Rectangular to Elements 

-1 

> 

~M) 
V(ec,      -•*•-•• ~2 e =     \(e cos E)- + (e sin E)' 

=  J      : -"•••    '     •" ' (e cosh E)     - (e sinh E) for hyperbolic orbits 

i = tan 

u: = tan 

n 

r~2 T~ 
-1     l     1    z z 

P~~Ö    - P  O 
x   y y   x 

.  P Q    - P O 
n - t^n"1   I    y z      z y 1 P~ö" - p 0 

X      Z Z      X 

'(*) 
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where: 

r =     V^~      r        2 
<x    + y    + z 

2       .2       .2       .2 
v     = x     + y     4- z 

e cos E =  1  a 

„       xx + yy   +•  zz 
e sin E = 

yj\ a I » 

e cosh E  = 

e sinh E = 

for the hyperbola 

2     2       .    . .   ,       . ,2 
r     v     -   (xx f yy  +• zz ) 

u 

D = xx + vy  !- zz 

D = e  cos  E 
er 

H  = 
e ^ up 

(r  - p) 

H = xx + yy +• zz 

yf^P 

P    = D-x - Dx 
x 

P     = Dy  -  Dy 
y 

P    = Dz  - Dz 
z 

O    = Hx - Hx,   etc. 
x 
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••/ 
~3~ 
a 

M = E - e sin E or e sinh E - E 

E = tan i   / e sin E    \ 
I   e cos E    I 
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3. 3 RADAR DATA 

All radar observation input is converted to the basic set:    R,   A,   E,   R,   P, 

Q,   P,   Q.     This section contains the formulae for these conversions.    Input 

is generally in feet,   degrees,   and seconds,   while internal units are earth- 

radii,   radians,   and minutes.     The details of units conversion have been 

omitted. 

First,   however,   Figures 6 through 9 depict most of the radar quantities in 

Sections  3. 3 and 3. 4. 

W, --z 

w. 

UP 
NORTH 

ws \ 
^_-  

\ h 

f •\ 
Wi  s 

Figure 6.    Radar Station Coordinates 

r 
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THE   TANGENT   PLANE   AT  W 
CONTAINS   NORTH,   EAST   AND  Qp 

» 

Figure  7.     Azimuth and Elevation in Station Coordinate System 

W     is position of the vehicle 
g 

W     is position of the station 

s s Q     is the projection of Q =  W  -   W     onto the tangent plane at W 

R   = IG! 
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HERE  C.^.C    ARE    PARALLEL  TO   W( , W? , W3, RESPECTIVELY 

OpplS   PROJECTION   OF   0   ONTO    £ , rj   PLANE 

D = TOPOCENTRIC    DECLINATION 

HA:TOPOCENTRIC   HOUR   ANGLE 

Figure  8.     Hour  Angle and Declination in Station 
Coordinate System 

( 
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Figure 9.     Station Network for Interferometer Data 

Here S,   S ,   and SQ are a network of stations that report range and range 

rate differences.     Let 

Then 

3.3. 1 

R =   |W-S |   ,   R    =   | W-Sn [,  R0=   |W-Sn | 

P = R - R. 

Q = R - R 
Q 

P = R - R. 

Q = R - R 
Q 

O 

Hour Angle,   Declination (HA, D) to A,   E 

E = sin"     (sin $    sin D + cos  $"  cos D cos HA) 

A = tai -1 sin HA cos D 

coe  $    sin D - sin $    cos HA cos D 

where $'  = geodetic latitude of the station. 

\ 
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3.3.2 Right Ascension,   Declination (PA, D) to A, E 

HA = a - RA;  compute a as in paragraph 3. 1. 2,   and then apply paragraph 3. 3. 1 

3. 3.3 Af,   At,   to R,   R 

3. 3.4 

R = k. Af where k is input 

R = k„ At where k_ is input 

L,   M,   N to A,   E 

!1_1   ' M 

E z cos"1   I VL2 I M 
) 

3.3.5 L,,   L-,,   L3 to A,   E 

where 

L = C12L1  + C11L2 

M = C11L1 +C21L2 

N = L. 

c. .   = cos   *,   c. 0  =   -sin  i-,   c~     =  sin  i|r 
i 1 12 £l 

•i/       = rotation angle (input) 

and apply paragraph 3. 3. 4 
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3. 4 PARTIAL DERIVATIVES OF RADAR DATA 

In tracking and data studies,   it is necessary to compute partial derivatives of 

radar data with respect to parameters of the initial conditions,   differential 

equations,   station locations,   and observations.    For the purposes of this 

section,   it will be assumed that the (integrated) position of the vehicle is 

known,   in earth-centered inertial rectangular coordinates,   as are the partial 

derivatives of these coordinates with respect to the first two types of 

parameters. 

3. 4. 1 Notation 

p.,   i = 1,   2. 

&Pi'   *Pt' ^Pi 

a 

s        s 
w 

the ordered list of initial condition and 

differential equation parameters for 

which partial^ are to be computed 

-—,   -^— ,   . . . ,   3— the partial derivatives of x,   y,   . . . ,   z 

with respect to the p. 

I longitude of the station 

$ ' geodetic latitude of the  station 

h height of the  station 

a    + CM (t - t   ) +  I,   as in g        ex g 

w.,   w.,   i  =   1 ,   2,   3 position and velocity of the vehicle in 
J        J 

the station-dependent W-system 

w, position of the station in the above  system 
X -J 

e ellipticity of the  reference ellipsoid 

a semi-major axis of the earth 
e 

b=a(l-e) semi -minor axis of the earth, 
e e 
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3. 4. 2 Position and Velocity in the W-system,   and Associated 

Preliminary Computations 

w     = xcos  Ofy sin ry 

W~   =   -X sin  ry  -j-  y  COS   rv 

w~ = z 

w     =  (x f a   y) cos 0" +  (y  -  u:   x) sin cy 

w~ = - (x + tu   y) sin a + (y -   J    X) cos a- 
Z e w e 

w -,  =  z 

To transform the partial derivatives of the  Earth-Centered Inertial (ECI) 

rectangular coordinates to the station-dependent system,   the following 

quantities are necessary. 

Differentiation of the above six equations shows that a simple substitution of 

dw. 3w. .. ... 
l   . J   r        •        •       i     ->     -> J   3X       oy dz -*•  fo r  w.,  -r—— for w.,   j  :   1,   2.   3,   and -— ,   ^r~- ,   . . . ,  -^— 

aP. j   5p. j 3pi    apt dpi 

for x,   y,   . . . ,   z yields 

1 5x By 
-=r    =  -sr     COS   Ct   +  -^—    Sin   rv 
Bpt     api api 

2        -3x dy 
-=r   = T: sin cy t-zr- cos <y,   etc 
dp. 3p. dp. 

Differentiating with respect to I,   since -rrr =   1,   gives: 

dw 
=   -x sin a + y  COS  ry =  w. Ö«      -    - — „  .   7  • ., -   -2 
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öw2 

-xcos a - y sin a = -w. äx    "   —   "    y i 

= w. 
54      " "2 

öw2 

=   -w. 
di 1 

To find the station position in the W-system,   we use: 

where: 

w,   = (a  A    + h) cos 
1       x   e    s 

w!! =  (b  B     + h)  sin  5 3 e    s 

.2 

A    = (cos     $    + —=-   sin     $   ) s      v 2 
ae 

a2 

/   •    2  **   ,     e 2   x*v-l/2 B     =   (sin     I     f—A-   cos     $   ) 
S b^ e 

Differentiating with respect to $    and h, 

awj (i) 

d$ 
i 

Bws3 s       (1) 

3$ 

Approximate formulas;  correct only for a spherical earth. 
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Bw" 

dh 

3w' 

}h 

= cos 

= sin 

At this point it is convenient to introduce three intermediate vectors Q,   U, 

and V,   and the quantity R. . 

O = W - WS vehicle position relative to the station. 

q2 = W2 

q3 " w3 ' w3 

R =   |Q|    =    yqJ + q* + q* 

U  = Q/R,   a unit vector in the direction of Q 

Uj   - q}/R 

u2  = q2/R 

u3 = q3/R 

V is the vector U referred to the East-North-Up system 

Vl = U2 

v-  =   -u.   sin  $     4- u,  cos   $ 
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t 

v-, - u.  cos  §    + u3 s*n 

•iR 
2 T 

+ V2 

R    = vR 

Then, 

v.,  =  sin E 

v = cos E 

v2 
   = cos A v 

vl 
  = sin A 
v 

To compute the -*— and -rrr- we will need v,   and to this end we compute 

ti =4 £w " UR^ = ^ CW - (U • W) U] 

then v ,   = ü-. 

v~  =  -u.   sin  $     + u.,  cos 

.      Vl+V2V2 
v =  

3. 4. 3 Range Partials 

V2 2 2 
q,   + q2 + 9ß  results in: 

•^— = U •   -=r— = u. -— + u-, -  + uQ -^  
dp. ÖPi 1  dp. 2 öpi 3 dp. 
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^R s s _ = Ulw3 - u3Wl 

5$ 

3R 
Tf  = Ulw2 " U2W1 

3R 
äh = -ul cos -u, sin 

OR 

bias 
=  1 

Ö.R 
5t = R = (U • W) 

3.4.4 Azimuth Partials 

-1 
Differentiating  A = tan       (v. /v-,) 

3A 1 
dp.    ~ R ^——  cos A -   I -  sin $'  + ^  cos $'   1 sin A 

Bpi V     Bpi Bpi / 

/~> 

dA        sin A      , * * . 
 - = —ö     lw,   cos   $     + w.   sin  $    ) 
^r    Ri      l 3 

- .      -w.  cos A -t- w- sin $    sin A 3A i 2 
hi R 

ÖA 
5h = 0 

5A =  1 
bias 
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t 
äT = -T <V2V1  " vlv2) 

v 

3.4.5 Elevation Partials 

Differentiating E = sin      v~ = cos       v, 

*E         *      / ^            ** x ^     • **       öR    .     _ •5— = -5—   I   •>  cos  $    + •»   sin $    - -^— sin E 
öpi      Rl     \ öpi                        äpi °Pi 

:                  l           (                                **                               •          ** ^R                       IT   \ x- = ü—   I w-3  cos   *     - w     sin  $ x- sin E   I 
1     \ o"$                  / 

) 

0$ 

__,_     (w2cos  $    -_ smE) 

dE        -1     ,,   ,   SR     .     r, 
^K =R[   {1  +öh-  SmE' 

35.      = 1 
bias 

P        u.  cos $    + u-, sin 

3t cos E 

3.4.6 Range Rate Partials 

Differentiating R = (U •   W ), 

BR 
op \-(%o)>{°%) 
OR s   . s   .  1- = W-   u .    -w.u., 
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dK •a (w2ü1  -Wlü2)  f (w2u1  -w^) 

ÖR ——  =  - u,   cos 3h 1 
- ü, sin $ 

dR 

ai. bias 

= 1 

dR 
öt = R   = (U • W) + (U •  W) 

where   W = - u;
2 j +  _^L^ i | w + 2LX 

LX = 

,  -OJ     x sin o- +  ')•    y cos ft 

y;    x  cos cy •• üJ   y sin ft e e 7 

1/2 

3.4. 7 P,   Q,   P,   Q,   Partiais 

These partial derivatives are obtained by differencing the R,   R partiais using 

the appropriate station locations. 
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3. 4. 8 A,   E Partials 

3A        1 
dp.      Rv 

cos A •=:    + A ( -   sin öp. ^aP. 
dw 

cos   $ I- sin A  * 

öw 

ÖP< 
sin  $ cos   $     I - A 

^P. *) ^P; 
-  (Rv   + Rv) ÖA 

aE _  i 
apt   Rv" 

aw, ...    öw, 
-  cos   $     + -^   sin 

ap; op, 
aR    .   „     •  OR        _ T-—  sm E  -  E  rr—  cos  E 
öp. ap. 

-   (Rv   h Rv) 
aE 

3-Z3 



3. 5 DATA GENERATION CALCULATIONS 

The formulae used to compute data for data generation are a subset of those 

used in Sections  3. 1  and  3. 4 with three exceptions. 

3. 5. 1 Rise-Set Prediction 

(5 
.   R cos E      \ 

R -  rR cos ( -   - E      - sin        — \   = 0 m r / 

where 

r^ = vehicle position vector 

R = station position vector 

E =  elevation 

Em       =  input minimum  elevation or input maximum  elevation 

(whichever is applicable). 

This equality holds when the elevation E = E      in a two-body model.     The 

equation is positive when E >  E      and negative when E < E     .     Preliminary 

values of   -ise-set times are generated by converting the above equation to 

a function of eccentric anomaly,   9,   stepping from 9    to 6    + ZTT,   and noting 

the times of the appropriate sign changes. 

The equations in paragraph 3. 5.2 are used to compute the actual rise-set 

times from the integrated trajectory. 

3.5.2 Rise and Set Times 

t  (rise or set)  = t     4- At 

v,   -   sin  (E     ) 
it = L^. Si_ * 

Ü.   cos  $    + Ü., sin 

t    - current time n 

v., and ü.  are defined in 3. 4. 2. 
3 l 
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c 
3.5.3 Observations with Normally Distributed Random Noise 

0=0    + r c        n 

t 

o is the noisy observation (of type j from station s) 

o    is the nominal computed observation 

r    is the noise added, n 

r=na      +B        a- is the appropriate sigma for type j,   station s n sj sj       sj 

R   . is the appropriate bias (if any) 
sj 

n is a random element from a set of numbers 

with mean zero and unity standard deviation. 
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3.6 TRAJECTORY 

The position and velocity components,    X = (x, y, z)   and   X = (x, y, z),   of the 

vehicle and their partial derivatives,    XD     and   X       (i =   1,   .   .   . ,   n),   with 
!  i Pi 

respect to the trajectory (initial condition and differential equation) param- 

eters are functions of time defined by their differential equations and 

appropriate initial conditions (paragraphs 3. 6. 1 and 3. 6. 2).     The equations 

are integrated numerically (paragraph 3. 6. 3),   and at each observation or 

print time all the quantities,    X,   X,   X„ ,    and   X      (i =   1 ,   .   .   . ,   n),   are i M p.. ?i 

obtained by interpolation (paragraph 3.6.4) in the integrated results; from 

these the computed radar observations and partial derivatives (Sections 

3. 3 and 3. 4) and the trajectory output (paragraph 3. 6. 5) are computed. 

3. 6. 1 Differential Equations 

The equations of motion of the vehicle are 

X.^ + F (50) 

where   \x  is the gravitational constant (GM) of the earth,   r -   |X|   - 

(x    + y    + 7,   )        ,   and   F = F    + F    + F~   is the perturbative acceleration 

due to asphericity of the earth,   extra-terrestrial gravitational forces,   and 

atmospheric drag,   respectively.     The  initial conditions   X(t   )   and   X(t   ), 

if not given directly,   are computed  from the initial spherical coordinates 

or  elliptic elements.     See Section 3. 2  for these  formulae. 

The perturbative acceleration F    due to the asphericity of the earth is deri^sd 

from the assumed potential function. 

U =ü 1   - Z 
n = 2 

J    -     P   (sin <t>) 
n\ r   /     n 

4      n 

n = 2 m = 1 

— )   P    (sin d>) cos m(\ - X       ) 
nm\ r   /      n nm 

(51 
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z 
where 

r,  cp,   X 

J   ,J n     nm 

n 
,m 
n 

nm 

is the product GM of the Newtonian gravitational constant 

and the mass of the earth 

are the geocentric distance,   geocentric latitude and (east] 

longitude of a point 

is the mean equatorial radius of the earth 

are numerical coefficients 

is the Legendre polynomial of the first kind of degree n 

is the Legendre associated function of the first kind 

are longitudes associated with the J & nm 

: 

In the local horizontal coordinate  system,   in which the coordinate axes are 

directed Up (along the  radius vector),   East,   and North,   the force components 

are 

dU 
;U       3r 

a    \ 
1   - I     (n +  1) J     I — 

0 n \   r n = Z )    Pn<Sin <p) 

4 n 
+ 2 I    (n +  1) J 
n = 2   m = l 

P      (sin cp) cos m   (X   -  X        ) 
nm \   r    /       n nm 

g*r = 
1 *U 

E      r cos cp    BX 

~2 

4 n 

n = 2   m = 1 
m J — nm \   r 

P      (sin cp) n J_ 
cos cp sin m   (X   -   X        ) nm 

3-27 



-1 m 
'N " r    ?)cp 

r 

5 
I    J 

n-2 
P'   (sin cp) cos cp 

4 n 

n = 2    m=l 
nm 

(-)""»" 
(sin es) cos cp cos m  (X  -  X       ) v ' nrn 

The  Legendre   functions and  their derivatives are  computed from  the  recursion 

formulas 

P     (sin cp) = n 

-(n  -   1) P (sin cp) + (2n -  1) sin cp P (sin cp) 

P'   (sin cp)  =  sin cp P'        (sin cp)  t n P      ,   (sin cp) 

Pm      (sin cp) 
Pm (sin cp)       _(nH ,_i) _H^±  + (2n-l) sincp n cos cp coscp 

^T-i (sin *) 

cos cp n - m 

P      (sin cp) 
n •• JJ 
cos cp 

=  1  •  3 •   ...   (2m  -  l)(cos cp) 
m-1 

P• (sincp)                          P^+1  (sincp) 
Pn

m    (sm cp) cos cp = (n+1) sir. cp -^^ (n-m+1) —^^  

with the initial values 

P    (sin cp)  =  P'   (sin cp) =   1 

P     (sin cp)   =  sin cp, 

cos cp 
= 0. 
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I 
The force vector in the ECI coordinate system is then: 

g      ^ / cos cp cos ry -  sin ry -sin cp sin 01 

cos cp sin ry cos a        -sin cp am or    1      I    g^-,    j (52 
y 

g     ' sin cp 0 cos cp 

where cv = a     +  <r    (t - t   ) is the  right ascension, g e g' s 

The  gravitational attraction of other bodies  contributes 

* / X - X X    \ 
L^mA|x-x.V+l^tV F2=-^>.m;[- _^+-_i^j (53 

th where  m.   is the mass,   relative to the earth,   of the j '   body and  X.   is the 
J th J 

vector position of the j      body,   as obtained from the JPL-STL planetary 

coordinate tapes.     For a description of these tapes and their preparation see 

Reference 6. 

Note that the tabular planetary coordinates are with respect to the Mean 

Equator and Equinox 1950.0 coordinate system,  whereas TRACE calculations 

are referred to 0 hour GMT of start day.    The planetary coordinates are 

transformed to the coordinate  system of TRACE before   F     is calculated. 

The subroutine is described in Reference 7 which in turn refers to Reference 

The effect of atmospheric drag is the term 

F3= -p— v-^r;xA 
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where  o is the density at height 

h = r - 
a  <l-e) 

1   - (2e -   e zs *2 + y2 T72 

above the oblate earth,   and where 

CDA 

W 

X 
A 

VA 

A 

JA 

is the drag coefficient,   (or "ballistic coefficient"), 

is the vehicle velocity vector relative to the rotating 

atmosphere.     That is, 

V A 

x -f UJ   y, 
e7 

V   -   UJ    x, 
e 

z. ,   and 

|xAl. 

The atmospheric density is computed from an atmosphere model (or certain 

combinations of models) given by References 9,   10,   and 11. 

3. 6. 2 Trajectory Partial Derivatives 

The partial derivatives of vehicle position and velocity with respect to 

trajectory parameters can be approximated analytically,   or can be obtained 

by a simultaneous numerical integration of the variational equations. 

3. 6. Z. 1 Variational Equations 

The variational equation for an initial condition parameter a is 

K = [h ( uX OF 
^X 

x +itx 
a'    ^X     a 

54) 

1   ;       ' !       X   (to}       [    ":)to  '   Xry(to)  =  \^/\ 
ÖX 
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For a differential equation parameter 8, 

X.=      °      LJi±     +°1    Y   +^XÄ+^i (55! [k ("^) + txjxB + f| xs + lf 

with Xß(to) = Xp(to) = 0. 

Here   X     = -—,    X     = -=•—,   Xn,   Xn   and  -^-r-   are all 3-vectors.     The contents a      8a a      8a        p        ß 3ß 
r) F 

of the  square brackets and  —-   are   3x3 matrices.     The  system is  solved M 3X y 

for each parameter,   and all the numerical integrations are carried out 

simultaneously. 

3F In the above equations the  principal contributions to  -^   stem  from  the 

oblateness coefficient   J.,   and from the dependence of the drag force upon 

the position of the  vehicle.     (The latter is important for low-altitude  satellites. ) 

Lesser sources are the other-body gravitational forces and the higher order 
3F oblateness terms;  they are ignored in the calculation of —^ . 

The matrix in  square brackets is calculated as the  sum   V + T   where   V 

derives from the  gravitational force  including the   J_   oblateness term,    and 

T from the drag force.     The  spherical earth contribution is easily derived: 

d      /    uX \ /   -3 oX -4       dr  \       ,     /  -1   _      XXT \ , qM 

rc(-7-) = -*('   ^"3r   *?x) = 3Ml7If~)       (   ] 

Or       XT 

since -^- =  .     The oblateness component is not so simply obtained.    It 

is,   of course,   derived from the contribution of the J? term to the perturba- 

tive acceleration F., which is  in turn the gradient of the potential U.     The 
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calculation is tedious and only the  final matrix   V   is given here. 

Von 

P,   -Q + J   a2(x2S-U)     P^+xyJ?a2S 

P     fxy J^a  S 
xy 2   e 

P     rxz J,a   T 
xz Z   e 

xy 

P      -OfJ0a2(y2S-U yy Z   ev/ 

P      +-yz J_a   T 
yz   '        Z   e 

P      + xz J_a   T 
xz Z   e 

P      -t-yz J0a"T 
yz Z   e 

P     -OfJ.a2(z2T-3U; zz 2   e 

57) 

where   J      is the principal oblateness coefficient, 
Z 

P       =^,   Q = xy o 1       r 3r" 

2r r 

T 5 M 7Z        * 

2r r 

Zr r 

The  T matrix,   which shows the dependence of the  drag force upon the  vehicle 

position,   is derived as  follows 

T 
5F3       I/CDA\  a 
JX   " " 2 I     ¥    I 5X ( P vAxA) 

I/C^AWVA>CA|P,+ PX 

)( 
2 \~W    / V 'A"A   ÖX  '   K~A    ÖX     *  C   A     3X (58) 

The derivatives of p,   V"A  and XA are: 'A 

(a) 
^0   _ ^_p_   ^h 
^X " bh   3X 
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(_ 
where 

h = r - 
ae(l  -  e) 

1  - (2e-e 2, x2f-2^1/2 

w 

dh        / öh     öh     ah \ 
ax = ^ ax' ay * a"z y 

ah _ x   I 
ax " r   1 

2      2 a   e (Z-3e+e  ) z 

r   2   ._        27~2    277172" [r   -(2e -e    )(x   fy   )] 

2      2 
vu i a   e (2-3e f e    ) z öh _ y   11 e    ;  
ay '  r    J r   2   ._ 2~77     2.-,3/2 ( [r     (2e-e    )(x   +y   )] 

az       r    ) r    2 
aee(2-3e+e

2)(xV) 
2W   2,    2.-,3/2 [r     -   (2e-e^)(x   +y^)] 

and -r-r-,   the rate of changes of density with altitude,   depends upon the model 

atmosphere,   its parameters,and h. 

An approximation to -^ in the form 

9P _  -1 P 
3h - ? h 

may be used by specifying a value for  p' in each of the intervals 

0    <h < 108 n mi and 108 < h < 378 n mi.    Alternatively (as in Reference  12), 

•fir may be calculated from density expressions,   for 76 < h < 108 n mi 

4/3 
P1 = ,606X10--(^)1(i-riL + 0.85(>l-i) P10_7]f1+^(i±-£) 

t 
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n 
and for  108 < h < 378 n mi, 

pz = pQ(h)  (0.85F10   7)|l + 0.19 [exP(0.0102h) -  1.9] (i±^££j   j 

where log1Q p    (h) = d     - 0. 00368 h + 6. 363 exp[ - 0. 0048h] . 

Differentiating each of these expressions with respect, to h,   one obtains 

9PX     -dLP 

~~5h~       h _ 5.606 X10-12(^)   1 1       /l + cos^\  /184 - 2h 
4896 32 -)3(:- 

+ 5.606xi0-12(^)dl(0.85)F10-7(^
6) 

1/3 
_L     11 + cos^r/532 - 7h\ 
24   "\        2 /   \ 14688 / 

and 

8p2 |0.00368 + 0.0305424 exp[-0.0048 h]] 
~W = " p 

0.4342944819 
+ (0.85)F10  ? X 

expi 2. 302585 (d2 - 0. 00368h + 6. 363 exp[ -0. 0048h])|     X 

[0.001938(1±|2£L)     exp [0.0102h]] 

3V 
(b) 

A       d      r , . ,2      ,. .2       .2-,  1/2 _,_   [(x + o:ey)    +(y- o:ex)    4- z   ] 

cu 

V A 
HA.   *A>   0). A'   ~A 

0 ü 
ax 

(c) 
A 

ax -0) 

0 

0 0 

0 0 
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c 
Combining these results,   the elements T.. of the T matrix are 

11 

CDA 

2W 
v       .ho    ah       P\xAyA\ 
VA XA ah   ax "     vA      I 

D        |,r     •      do   dh e    A _r -   - >• ,      -   .- + - . •  + pVAo) 12 "        2W      I   'AAA Bh   By        V A 

13 

CDA   / a^ ah 
~Tw~  \ V

A
X

A ah az 

21 
D       I v    "      A?_ ££ e •" vAyA ah ax " 2W V A >VA% 

22 

23 

CT^A     / py;    X.V. 
P        fv     •        ^P_   ah e   AyA 

2W     I    AyA   ah    ay  '  "    V A 

^St   (v    y       l£   oh 
2W    I    AyA   ah   az 

31 

cpA  /v   .     ap  ah    P%yA^A 
2W     I    AZA   ah   Bx " VA 

CnA   / poj  xAz. 
T       -        _p v    >       ap   dh e   A A 
i32""    2W     lvAJA   ah   ay VA 

T       - -^t   [V    z      AP   öh X33 "        2W     I     A  A   ah   az 

aF The matrix —  is  simply 
ax 

ft 

aF 

*x 
3 1        Ar 

CDA     /   XAXA 
A        W vl 

+ I 59) 
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3.6.2.2 Variational Equation Initial. Conditions 

The initial conditions,    X   (t   )   and   X   (t   ),    are given here for three types of ax o' ax o B rK 

parameters. 

For parameters in rectangular coordinates of the initial position and 

velocity, 

(IS-  \      = (^2i \      =1,   the  3x3 identity matrix and 

(s ;,=(-), = o. 

For the  spherical coordinate  parameters, 

a (right ascension) 

2*B  -y 
ha        y 

öy ^- =  x 

da 

(declination) 

dx . ^r-r = -r  sin 6 cos ry 06 

—jr = -r sin * sin c 

ÖX 
-y 

by = 
do- X 

M - 
da 0 
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1* 
as = r cos 8 

Ö6 
= - z cos a 

öy .     . •~ = -z sin a 
dö 

dz 
-<-=- - v (cos S cos  6 - cos A sin B sin 6) 
dö 

ß     (flight path angle' 

dx - ^X - ^Ü. - n 
OB " OB- ap ~ 

^-=- = -v [(sin ß cos  6 + cos A cos ß sin 6) cos a + sin A cos B sin evl 
dp 

-r-g- = -v [(sin 8 cos 6 + cos A cos 9 sin 6) sin a ~ sin A cos B cos ry] 
dB 

i^z -^-- = v (cos A cos ß cos 6 - sin B sin 6 
OD 

A    (azimuth) 

dx      dy     ^z _ 
dA" dA" ÖA" U 

-=T-ä = v(sin A sin 6 cos a - cos A sin ry) sin dA        * 

-^ = v(sin A sin 6 sin ry + cos A cos o>) sin ß 
d A. 
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-^-T = -v(sin A cos 6 sin S) 

r      (magnitude of radial vector) 

Bx   _   X 
3r "  r 

5z - y 
3r      r 

^z _  z 
3r ~ 7 

3r ~ Br ~ dr 

v    (velocity) 

Sx _ ^y _ dz _ j-, 
cW       $v      Bv 

Bx _ x 
3v " v 

M = £ 
Bv       V 

>v      V 

The equations for the partial derivatives of position and velocity components 

with respect to elliptic elements,   are used to compute initial conditions at 

time t    of the variational equations for the parameters of this type.     They 
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may also be used to estimate analytically the trajectory partial derivatives, 

These equations are as follows. 

a    (semi-major axis) 

X     = I (X - 2M- X ) 
a      a x 2n        ' 

a      a v 2n 2      '> 
X = - nx 

e    (eccentricity) 

X    =  - 
e 

a + *l 
r(l-e   ). 

x   y 

r(l-e  ) 

Xe =       ~      2.1/2 
r(l-e-) n  2.1/2 y» + n(7) v« 

(1-e   ) 
P 

r(l-e2)1/2 
 ~   . <9    x     +n(—)     X 

.       2.1 /2       uj r M: 
1-e   ) 

O 

i     (inclination) 

X.   =   -, " ,       W 
1    (P2f o2)1/2 

z z 

where W =  P x Q 

X.   =    5 ^-T-TTT   W 

1     (P2 + oV77 
z z' 
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0    (longitude of ascending node) 

ax 
an " -y 

ay  _ 
an X 

az _ 
an 0 

ax 
ac " ~ > 

^y _ 
an X 

az 
aa 0 

u;    (argument of perigee) 

X    = -y    P + x   Q 

X    = -y   P + x    Q 

T    (time of perigee passage) 

X = 
T 

X  = 
T 

j. X 
i 

r 

The variational  equation for initial time is  like  Eq. (54) with the initial conditions 

X^   (t   ) =  -X(t   )   and   X.   (t   ) =  -X(t   ). 
to' o to° o c 

3. 6. 2. 3 Differential Equation Parameter Non-homogeneous Terms 

9F The non-homogeneous terms —^3- for the differential equation parameter 
dp 

variational equations are: 

CDA 
—^-z—   (drag coefficient) 

3F =F/
CDA-' 

CDA\ \       A 
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u   (gravitational constant] 

oF      Fl + F2      X 
Ö\L   ' M- r 

J.,   J., ,   X.,   (oblateness parameters! 
l       lk       lk r 

Denote the perturbative force components in the Up,   East,   North system 

(see paragraph 3.6. 1) as follows: 

'U ~2~ 
r 

5 4 n 
"fl   A    +       Y] V     B cos m (X-X 

n = 2 n = 2        m = l 

Ey     C sin m  (X-X 
0 ^-» nm v 

n = 2        m=l 
nm 

'N 

5 4 n 

n?2D*+        E7 ^ n = 2 n=2        m=l 
7.   E cos m (X-X 

nrr.'j 

then 

eU      -u.      l 5E    _ SN _ -u      l 
sj,    ~z J. •  öj.   "  ' di~ "i r 

i        r i i x        r l 
6o: 

d«U       -a BikCosk(X-\k),     ^ 
„ C.   sin k (X-X     ) 
E       -u,      lk ik' 

dJ. ik      r 
J. 

ik 
ÖJ-,   ~~2~ ik      r 

J. 
ik 

.61) 

dg,, E..   cos k (X-X.. ) &N       -\i      ik ik 
oJ' 2 

ik       r 
J. 

ik 

(62! 
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«ü  = ^± kB.,   sin k (X-X.. ),  ^3 = ^kC,   cos k (X-X., ) (63) dX., 2        lk x       ik'     3X.. 2       lk ik' lk      r ik      r 

J^=^kE.ksink(X-X.k) (64) 
ik       r 

The component terms are then rotated to the ECI system by the matrix given 

in paragraph 3. 6. 1. 

3. 6. 3 Integration Methods 

For the numerical integration of the differential equations described in 

paragraphs 3. 6. 1 and 3. 6. 2,   a choice of methods is offered.    They are widely 

known as the  Adams-Moulton and the Gauss-Jackson methods,   and the sub- 

routine names are AMRK and DE6F,   respectively.    Both are variable-step 

predictor-cor rector methods with automatic local truncation error control 

and double-precision accumulation features.     Both use the  Runge-Kutta 

methods to obtain  starting values.     (See Reference  13.) 

The Gauss-Jackson method,   utilizing  6      differences,   is of higher order and 

has proved to be remarkably effective in the integration of most satellite 

trajectories.     In some restricted but well-controlled tests,   this method, 

applied to the equations of motion,   produced results that compared favorably 

in both speed and accuracy with more  sophisticated  special perturbation 

methods.     (See Reference   14. )    Because of its procedure for changing the 

step size,   the subroutine's efficiency will drop and lose accuracy when the 

step size changes are extreme,   as in highly eccentric orbits or upon entry 

into the atmosDhere.    In these cases the use of AMRK,   in which the variable 

step is more  stably handled,   is recommended. 

3. 6. 4 Interpolation 

Each time the position and velocity (and their partial derivatives) of a vehicle 

are  required,   the desired quantities   X,   X,   X_     and   X       are obtained by 
Pi Pi 
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C 
interpolation from the results of the integration.     This technique permits an 

uninterrupted numerical integration,   is comparatively rapid,   and,   as used 

here,   is quite accurate.     In particular,   function values and their first and 

second derivatives at the two adjacent integration steps are retained to permit 

5      and  3       degree interpolations  for position and velocity,   respectively. 

The method used is Hermite interpolation (Reference 15). 

3. 6. 5 Trajectory Output 

The position and velocity vectors,    X and   X,    of the vehicle are the basis of 

the trajectory output.     From these quantities,   obtained by interpolation from 

the  results of the numerical intergration,   are computed the  spherical coordi- 

nates   a,   5,   ß,   A,   r,   v   of the vehicle (see paragraph 3. 2. 2) and also 

geodetic latitude,   $     =  tan -1 
~ 2   TTl 2 

(x~ + Y   )    '     U  - ef 

longitude,    I — a - a     -   o;   (t  - t   ) 6 E ev g' 

height,   h = r 
ae(l  -  e) 

1   - (2e   -  e 
2.   x     + y 172 

These results are output in feet,   degrees:   and seconds. 

The partial derivatives,    X„     and   X_    (i =   1 n),   of vehicle position 
"i *"i 

and velocity with respect to the n trajectory parameters can also be printed, 

Optionally,   the  elements  of the osculating ellipse are output.     Included are 

the elements   a,   e,   i,  il,   w,   T  (see paragraph 3.2.4),   and also 

Mean anomaly,   M = E  -  e  sin E,   where E = -" C-*) (deg) 
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True anomaly,     f   = 2 tan 

• 3J2ae    ^^^ 

Q =   -    r-r* ^    COS   l 

-1 UeV/2,       E 
-;  I tan   -sr 1   - e 1 2 

0'    = 

7372T 
2a p 

3J^a2 

2   e 
~T]Z       Z a p 

c 1 2 2 . 2 n ,. 5 2 .. . r v bin 8 (1   - "2J- sin     L)       where p =  

(deg) 

(deg/day) 

(deg/day) 

Apogee,   r     = a(l   + e' a (n mi) 

Perigee,   r     = a  (1   -  e) 

Keplerian Period.   PT„   = 1 K 
2-a 

3/2 

vu 

Anomalistic  Period.   P,   =  P.. 
A K 

•srJ -,a 

(n mi) 

(min) 

<:   e     .a 2  .. 
1   - 3 sin    Ö) 

where  6  - declination 

(min) 

r 2 2 I   3J   a     (1   -   5/4 sin     i 
Nodal Period,   P^T = P.   -  PT.       —^-% -, A h     I       ,—     2   , _ . t 

' p   a     ' 1   + e cos IK) LV 

(Formulae  from.  Reference   16. ) 

3. 6. 6 Analytic  Trajectory 

On option,   an analytic  orbit can be obtained instead of an integrated  orbit. 

The analytic trajectory consists of a Keplerian orbit with nodal regression 

and element decay due to atmospheric drag.     The changes in elements are 
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calculated at perigee on every n      revolution where n is   specified 

formulae are taken from Reference  17. 

These 

3, 6. 6. 1 First Order Nodal Regression 

For one revolution,   for small e: 

40 = 
-3TT J„a    cos i 
 2   e  

a    (1  - &   ) 

Aw _ 

2                       2 3-n J_a     (4-5 sin     i) 
L   e   

~   0   Z .. 2.2 
2a    (1   - e   ) 

or 

,T   „2      1/2 
An 2   e 
At ?   7/2,. 2.2 

2a        (1   - e   ) 
cos  1 

An 
AT 

3J,a2 

2   e 
1/2 

"   7/2.. 2,2 4a        (1   - e   ) 
(4-5 sin    i) 

3. 6. 6. 2 Element Decay Due to a Rotating Atmosphere 

Define scale height H = —= h + 12  where   h  is the altitude in nautical miles, 

If -?y > 2,   the following formulae are used: 

Aa = - O [l   f  1   -  «e  f  3e2  1 
L 8c (1   -  e*)  J 

Ae = - O ( - 
1  - e 

1   - 
3  r 4 e -  3e 

8c (1   - eZ) 
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A-          on      \2 |l /He,   ,  /,  ,  f*  ,  9e2 + 6e-15\ 2 
Ai,       B(l-e)    I - (T   T) + (1 +2^ +  __ | cos    y; c M-e 8c(l-e) 

sin l 

AC = - B<'.   - e)' 
ri+fl+9e2 + 6e-is] 
L        C 8c (1  - e)2      J 

where: 

Au; =   -  AC cos  i 

„         D               2 ,       1 + e , 2TT     ' 
C =    o    a    f —i -,,/-,      (— ) 

m        P (i   _ e
2)1/2 C 

ae 
TT 

2n 
f =  1   (1 - eH —pi") cos l 

—   =  ratio of earth  rotation rate to  satellite mean motion 
n 

p     = density at perigee 

CDA     ne .1/2  n      .-1/2 B -• "      —   a D    f (2TTC) 
m n p 

1 - e2   \     T72 
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If -YT = c < 2 then use: rl 

•«v 

where 

0 <!•.>»/* 
Aa = - rTT-    [(1  - 2e) I  (c) + 2el  (c)] 

(1 - eyIL 

Ae = " i  (1 + e\'/z   to - e) Ii(c) + f £i0(c> + 12<c)] } 

(1 - e) 

Ai = -K   [j  [I    (c) - I2(c)]  + cos2 u. [I2(c) - 2el1(c)]} sin i 

AQ=   - K [I2(c)  -   2el   (c)]  sin  (.cos  o. 

Aw= - AP cos i 

_      -,         D 2 , ,   -c G = 2-       a     o    f (e 
m • p 

C„A     n 
K  =  TT   _±L_     -1   a  o    JT (e_C) m n D ^ 

I„,   I. .   1^ - imaginary Bessel functions of the first kind. 0      12 fo y 

3. 6. 7 Initial Condition Derivation (Gaussian Method) 

On option,   initial conditions may be calculated  from  two sets  of RAE 

observations.     The following procedure is adapted from Reference   18. 

Let 

X. = cartesian vector associated with first RAE observation 

X? = cartesian vector associated with second RAE observation 
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W = -j-^ ^—r   =  unit vector perpendicular to plane of 
Xl   * X2' 

Compute 

observations 

U, = -r-rrf—p   = unit vector parallel to X. 
1 |Xl| { 

V =  W  x U     =  unit vector perpendicular to U.   and W 

1      , .       1 Xl   '    X2 f     =   ~2~    (v_ - v  ) = -j arccos 
xi     xz 

1  " U[\XY\   1X,|)1/2 cos f]3/ 

2 "* 2('X. !   'X_!)1/2 cos f 
1 C- 

The  following iteration is then used to find g 

Set g(o) = f 

Calculate 

[i) g3 = sin g 

—       1(1   S        (1 

'4 %A   =   COS   g 

.   3     (i) g_  =  sin     g 

•   4     (i) 
g6 =  sin     g 

O 
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87 " s2 " 84 

g8 = Vg^ 

g9 = (g7) 

Ae - '7    \ B2  /      &5 
g_    i - .   ;      -.    • -3&4' 

3   / Jgl      , \       1     r i,  U)        vi 
g9   \ 2g? 

then g(H1) = g(i)  - A} 

Iterate until I Ag I   < e- 

The Keplerian elements are then given by the following equations, 

Xxl   +  |X2I   - 2   JlxJ   |X2|   cos g cos f 

2 

Z sin     g 

|x | |x2l 
e cos E,   =  1  -     ;    e cos E_ = 1  - la 2 a 

e  sin E     = —: j&-   [e cos E.   -  (cos  2g)(e cos E_)] l sin "2 x c* 

-(sin 2g)(e cos E^) 
Cd 

1    e sin E. 
E, = tan"*     ~ 0 < E,   < 2n 1 e cos E —     1 
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= [(e cos Ej)2 + (e sin E^2]1'2 

- 

3/2 
T = t1 - (£1 - e sin E 

VT 
if a > 0 

= cos   "  W 0    <   i    <    TT 

0 = tan 
-1 x 

-W 
0 < Q< 2TT 

cos   V 
cos E     -  e 

1 1 -e cos  E. 

yjl-ed sin E. 
sin v,   = 1 1-e cos E. 

U.   cos v     - V     sin Vj 
.. 

O 

X 

U.   sin v,   + V.   cos v 
111 A 

-1    Pz 
tan        T-s— 0 < oj < 2TT 
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3. 7 DIFFERENTIAL CORRECTION AND 

ASSOCIATED COMPUTATIONS 

Basically,    the   problem   of  differential   correction   is   the   change,    or 

correction,   of a given  set of parameters  so as to achieve some specified 

result.     In this case,   the goal is to minimize the weighted sum of the 

squares of the differences between the (observed) radar data and the 

corresponding quantities computed from the observational model.     The 

model,   of course,   includes the trajectory and radar parameters to be 

corrected. 

3. 7. 1 Notation and Nomenclature 

In  general,  matrices   and  vectors   will  be   denoted by  Roman  capitals; 

their components by corresponding lower case letters,   with subscripts 

where applicable. 

n number of observed quantities 

m number of parameters 

k number of effective parameters (m minus the number of 

restraint equations) 

o. i      observation (may be  range,   azimuth,   elevation,   range 
l 

rate.   P,   O,   P,   Q) 

a   .       radar sigma (multiplicative weighting factor) to be applied 
sj 

to data type j from station s 

ß   .       radar bias (additive weighting factor) to be applied to data SJ 
type j from  station s 

O vector of  weighted residuals  (differences between observed mc B x 

and computed radar quantities) 

P vector of parameters 

AP        correction vector for P 
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G vector of bounds on solution AP 
9o. 

A matrix of weighted partial derivatives; a. . = -*—/ cr 

i =   1, 2,   ....   n; j =  1,2,   . . . ,   m 

o. determines the appropriate cr to be applied 

T A A transpose 

B constraint matrix 

3.7.2 Sigmas and Biases 

Usually, some empirical evidence is available as to the relative accuracy of 

various types of data from different stations. For this reason, two types of 

factors,   each correlated with a particular station and data type,   are used. 

The most common of these are the radar sigmas.   The residuals and partial 

derivatives of a given type of observation from a specific station are divided 

by the corresponding tr   ..    In this way,   it is possible to insure that the more 

accurate data have a large part in determining the optimum set of parameters. 

If it is known (or suspected) that a station has a constant bias in reporting 

either data or time,   the   ß   .   are used.     These are applied to the appropriate 
sj 

romponents of O (before the division by cr   .).     Biases may be included r mc SJ 
with the parameters to be  solved for,   but only biases on basic data types. 

In the succeeding paragraphs,   the sigmas and biases in A and O        are in- 

cluded implicitly. 

3. 7. 3 The Unconstrained Normal 

In its simplest form,   differential correction involves the solution of the 
T T T linearized problem (A   A) AP = A   O       .    A   A is the normal matrix.    If a. r T mc l 

is a. row of A and if A   A = 0 initially,   the normal is formed in TRACE by 
T T T accumulating A   A = A   A + a.    a.,   i = 1, 2,   . . . ,   n,   at each observation 

time. 
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: 

3.7.4 The Constrained Normal 

It is often desirable to impose linear constraints of the form AP = B(AP') + C 

on the solution. P' is some subset of P, and C is a vector of constants. For 

instance,   suppose the parameters to be solved for are 

p • = S latitude 

p? = S., longitude 

p., = S_, latitude 

p,   = S_, longitude 

pr  = S9, range bias 

where S  ,   S    are two radar stations. 

Then the requirement that the positions of the station relative to each other 

remain fixed is  equivalent to the matrix equation 

rAPl-| 

AP2 

Ap3 

Ap4 

.AP5. 

Pi 0 0 

0 1 0 

1 0 0 

0 1 0 

0 0 1 

ft 

AP AP1 

T 

(65) 

The effective problem now is to solve the  reduced system (AB)    (AB)(AP') = 
T T (AB)    O       .     If a.  is a row of A,   and if A   A =  0 initially,   the restricted normal 

m C 1 r-p rp rr, 

is formed by accumulating A   A = A   A + (a.B)    (a.B). 

3.7. 5 Bounds 

Given a set of bounds g. ,   the corrections Ap. to the components of P are: 

(a)        less (in absolute value) than g. if g. > 0 

(b)        zero if g.  = 0 
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(c)        unrestricted if g. < 0 
°i 

for i =   1,2,   ...,   m. 

If constraints are to be applied,   the bounds are adjusted to the new problem. 

HI     (Sign g;) 

(g; 

Lethj  = E :   P'    b j=l,2,...,k 
J      i = l e.T 1J 

l 

Then there will be k new bounds,   g'.,   where 

if h. > 0 
J    V*J 

'.'  = 0 if h.  •- 0 
'J J 

g.' < 0 if h. < 0 
&J J 

Notice   that   g.'  =  g.   for a variable   not   appearing   in  any   restraint 

equation.     Also,   specifying bounds that are equal in magnitude but op- 

posite in sign for two parameters to be corrected by equal increments 

will result in a zero correction to both. 

3.7.6 Solution of the Normal Equations 

For  the   purpose   of  this   section,   assume  that  there   are  m  para- 

meters p   , p_,   . . . ,   p      to be corrected.     (The succeeding paragraphs 

require no change other than a substitution of k for m in the constrained 

case. ) 

T T At this point then,   we have the mXm matrix A   A,   the vector A   O       , 

and a set of bounds,   g..     The problem then is to minimize   ||AAP - O 
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_ / Api \2 

under the side condition that L j I  < 1,   the  sum being taken over all i 

for which g.  >0. 

We can,   without loss of generality,   assume that g. 4 0.     This is so because 

g.  = 0 implies that  Ap.   =  0,   and the i       row and column of the normal matrix 
l l 

may be ignored.     This  simply reduces the dimension of the problem. 

Now,   let G be the diagonal matrix so that G..  = 77—  if g. >  0:  g..  =  0 if g. < 0. fe li       §i &i Bn 6i 

We wish to find a value of z so that the solution AP'(z) of the linear system 
T 2 T (A   A + zG   ) AP = A   O satisfies the given side condition.     This involves mc ° 

two procedures:    the choice of the best value for z,   and the actual solution 

of the  system. 

3. 7. 6. 1 Determination of z 

As   a   start,    find   AP'(O),    (the   solution  to   (ATA)   AP = AT0       ).      If 

z(/AP;V2 

\ V-   1 '  ' 
/Ap.(z)\2 

positive constants.)    If not,   define y(z) =  Zl—^  I    -   1.     Now y(0) > € 

Compute y(h),   y(10h),   y(100h),   . . . ; h some present constant,   until either 

(1) a value of z(=kh) is found so that -€3 < y(z) < €1>   i-n which 
case AP(z) is the solution,   or 

(2) two values of z are found so that y(zj) > €, and y(z^) < -*2.- 
The  required value of z is  now bracketed. 

If (2) is  the case,   the next sLep is to choose a value z., between z.  and z?. 

z,  =  0. 8z,   + 0. 2z? where the 0. 8,   0. 2,   are  fairly arbitrary and z.   and z? 

may have been interchanged,   so that z^. is closest to the value of z giving 

the smallest y(z). 

*f ~€7 < y(zo) < ei»   AP'(z   ) is the solution.     Otherwise,   inverse  quadratic 

interpolation is used to obtain a new guess z..    Again,   if -€    < y{z.)<€,, 

AP'(z.) is the  solution.     If not,   the uwo values of z,   from the  set (z.,   z?, 

-I J     <   1  + e       the problem is solved,     (e,  and €    here are  suitably small 
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z,,   z.),   which bracket the solution most tightly,   are chosen and the process 

is repeated from (2). 

Tf more than twenty solutions of the linear system are required,   the process 

is abandoned. 

3. 7. 6. 2 Solution of the Linear System 

This section describes the procedure used in solving the linear system 
T 2 T (A   A + zG   ) AP = A   O        .     For a discussion of the theory involved,   see mc ' 

Section 2. 

T 2 T Let C = A   A + zG   .    It is desired to find a matrix S so that SCS     - D; S 

lower triangular with (-1) on the diagonal; D = diag (d,,   . . .,   d  ). 

If C is a one-by-one matrix,   S = -1,   D =  C.     Now augment C by another 

row and column: 

Since S' must be lower triangular,   with (-1) on the diagonal,   and of the same 

order as C,   it must be of the form 

T and the requirement S'C'S'      - D' is equivalent to solving for a vector W and 

a scalar b such that 

C       <i   \   / ST   w 

T .   , d~      a   /   \ 0      -1 
(66) 
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It is easily verified that 

( 

W = ST D"1 S d     and 

b = a - WT d 

satisfy the  requirements. 

The computations   follow the above outline,   starting with the two-by-two 

matrix  C. .,    i =  1,   2, ; j =  1,   2  and  continuing  until  the   decomposition 

T 2 T A1A+zG AxO mc 
T T O       A O        O mc mc     mc 

(6?; 

has been found. 

Carrying out the multiplication indicated on the left side of the equation shows 

that the m-dimensional vector   W is the solution to the linear system. 

3.7.6.3 Residuals Prediction 

Cr =     AAP - O is computed from the augmented normal matrix: mc mc" * ° 

"AAP - O       l|2 = T(ATA AP) •  AP]  -  2 [ (AT0       ) •  AP] + O   T O (68) mc LV mc' mc    mc 

3.7.6.4 The Inverse Normal 

T      -1 T    -1 
(A1 A)       = SXD   LS (69) 

with S and D as defined in paragraph 3.7.6. 2. 

3.7.7 Convergence of the Differential Correction Process 

The     O is a measure of how well the orbit,   computed on the basis of a inc c 

tüven set of parameters P,   fits the observed data.       0^        ,   computed as 

in paragraph 3.7.6.3,   is an approximation to   || O        ||,   which would be  ob- 

tained by replacing P by P + AP.     This  approximation would be axact if the 
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least squares problem were linear; that is,   if P were in a sufficiently small 

neighborhood of the minimum point. 

Convergence,   then,   is defined as being that point at which further corrections 

corrections to P would produce no significant decrease in  || O       ]\; i.e. ,   no 
TilC 

over-all improvement of the residuals.     The criteria used are 

IIO       ||   -  || OP     |l 1/? mc                mc      ^ I/-\ -1/2   . , .. , r     < € .  or     O             •   n             < e     where   n  is the number of 
Homc||        -   ' • 

observations and e     and e     are input quantities. 

If   IIO is   decreasing   with  each iteration,   the  process   is   converging 
mc 

and the bounds are expanded at each step (by a multiplicative factor ß .) to 

permit faster convergence.     On the other hand,   if     O is increasing from f & mc ö 

one iteration to the next,   the process is diverging and the last corrections are 

presumed to have altered P too drastically.    In this situation the previous 

values of P and the corresponding normal matrix are retrieved and resolved 

with tighter bounds.     The new bounds g! are such that the weighted length 

||G'   •   AP'I; of the  solution is  reduced to  6? times  its previous value. 

3.7.8   The Correlation Matrix 

If  the   mathematical  model   is   exact,    if   the   observations   are   linear 

functions of the parameters,   if the observation errors have mean zero 

and are independent,   and if the input values of a   . are correct,   then the sj 
inverse of the normal matrix is  the variance-covariance matrix of the 

parameters,   due to the  random  errors  in the observations.     (For a proof 

of this,  see Section 2. )  If the elements of this matrix are given as c.;! 

the corresponding correlation matrix has elements 

c. . 
cJi  z IJ i,   j,   =   1,   2,   . .. ,   m. (70] J ^     c.. v^r JJ 
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2 
If all  of the   above   assumptions   are   true   except  that  all  of the   cr   . 

values are in error by a constant multiplicative factor,   then the values 

in the variance-covariance matrix will also all be in error by the same 

factor. 

L 
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3.8 ERROR ANALYSIS 

It is often desirable to analyze the basic statistics involved in a particular 

orbit determination problem.     This essentially entails a determination of 

the effects that specified sources of error have on the precision of the least 

squares parameters.     These sources of error,   for example,   may be in- 

accuracies in station locations,   random errors in observations,   or errors 

in differential equation parameters. 

The  error analysis procedure does not  require an actual determination of 

the orbit,   nor does it require actual observations; however,  the data types 

and data intervals must be specified for each station.    A basic error analysis 

may then be obtained by simple matrix manipulation. 

3.8. 1 Notation and Nomenclature 

n number of "observed" quantities 

m number of least squares parameters 

k number of parameters (other than least squares parameters), 

which are considered in error 

er   .       radar sigma to be applied to data type j from station s SJ 

W diagonal matrix of order n with o"   . for each "observation" 

as elements 

P vector of least squares parameters,   or "P-parameters" 

Q vector of parameters ("Q-parameters")  considered in error 

(other than least squares parameters) 

C(Q)   variance-covariance matrix of the specified Q-parameters 

A n X m matrix of weighted partial derivatives of the observa- p 
tions with respect to the least squares parameters; 

1/2 90c 
p oP 

A n X k matrix of weighted partial derivatives of observations 

with respect to Q-parameters 

A     -  W
1/2 £ Aq        W ^QT 
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T X (x,   y,   z,   x,   y,   z)    ,   position and velocity vector at time t 

T R (a-,   6,   8,   A,   r,   v)    ,   spherical coordinates at time t. 

T 
E (Z,   T\,   C,   t>   T|>   Ö    >   OI"t>it plane coordinates; ^-radial 

T|-in track,   C-cross track 

T E (a,   e,   i,   P,   o,   T)    ,   elements at time t 

T T (period,   apogee,   perigee)     at time t. 

3. 8. 2 The Normal Matrix 

T The   normal  matrix   is   formed   in   TRACE   by   accumulating   A    A = 

n       T .th T.    a. a. where a. is the i      row of the matrix A = (A   ,   A   ).    In terms 
i=1     1     1 1 p q 

T of P and O parameters the A   A matrix is: 

c 
ATA   = 

T A   XA 
P       P 

A   TA 
q     p 

A   TA 
p    q 

T A   1A 
q     q 

(7i; 

This accumulation is made in double precision in error analysis applications 

only. 
T - 1 3, 8. 3 (A      A   ) 

P       P 

The   matrix   is   the   variance-covariance   matrix   of   the   least   squares 

(P) parameters due to random errors in the observations.     (The  random 

errors in the observations are specified by the a   . . )   In the case of the 

orbital parameters,   the uncertainties given by this covariance matrix 

C(P') =  (A     A   )       apply only at the initial time t   . 
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T        -1 3. 8. 4 Effect of Q-parameter Errors on (A      A   ) 
 1      P       P 

In  paragraph   3. 8. 3,    only  the   effect   of  observation  errors   on the   set 

of least squares parameters was considered.    However,  station location 

errors and differential equation parameter errors will also contribute to 

the uncertainty of the P-parameters.    By including these MQ" effects a 

new covariance matrix is given by: 

T-l T        -1 T T T-l 
C(P") = (A      A   )       + (A     A   )   l A   x A    C(Q.)A   XA    (A     A  )   x 

P      P P      P P      q q      P      P      P 

dP" \ ^ ,^J oP" xT 

= c'p'>+ (wjc<QHw ) <72> 
ipi i T -1 T 

where   , ^    =-(A      A   ) A       A   .       Again,   this variance-covariance matrix 
SO p       p' P       q & 

applies at the initial time t   .     (Note:    The C(Q) matrix contains, essentially, 

the uncertainties in the O-parameters and must be input. ) 

3. 8. 5 Transformation 

Both   C(P')   and   C(P")   are   referred  to  the   initial  time.     Since   un- 

certainties in initial coordinates do not satisfactorily describe trajectory 

uncertainties,   it may be desired to translate these covariance mdtrices 

into other coordinate systems and to times  other than t   .     This is  some- 7 o 
times called the "updating" process.     The general transformation equation 

is 

(73) 

Transformations to other coordinate systems are accomplished as follows. 

(In all cases the result is a sum of two terms:    The first gives the effect 

of observational errors only; O-parameter effects arise from the second. 

Both the first term and the sum can be printed. ) 

3-62 



C<St»=fe)C(Xt>(äOT        <°">it plane) (?4; 

<Rt>=(S;)c<xt>(Sj 
T 

(spherical) (75 

c<Et)=(5 c(Rt)(S)T <*«»«*> {76: 
t / \        t 

/öT\ /öT\T 
t' = 1 äR~ / C^RtM   ÖR" 1 (period,   apogee,   perigee) v C(T ) = 

3.8.6 Transformation Partial Derivatives 

The following formulae are used for the transformation partial derivative 

matrices in paragraph 3. 8. 5. 

as. 
Orbit plane coordinates:    I   ^y     ] 

? =         (where X = (   y   )  for this and the following equation only) 

kxxl 

T)=  C   x ? 
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Let '!r be the matrix {^, T\, C ),   then 

SEt 

/BR' 
Spherical coordinates:   I Ay 

a (right ascension) 

ba -y 
3x 2        2 x    - y 

da X 

dy 2        2 x     - y 

da 5t= 0 
öz      ÖX 

6   (declination) 

06 

2 j 2     ; 
r      \ x     t- y 

d6 - yz 
by   r

2 V^^" + y 

06 VxZ + y2 

öz 2 

**   =0 
dX 

T * 0 

^Xt     V o      *T 
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ß (flight path angle) 

3ß 1 . I J« 
}X " 

r * 
I r 

Siv2- .2 
•   r 

\    r 

38 

dX        r ^2 _ j 
X   "    -X 

r2      \        v2 

A (azimuth) 

...       ..       .    .       ../    .       .     xzf\   1 
5A      y 'rz_zr' _ (xy-yx)(xz-zx + —J - 

3x~ = j   2   .2..   2,    2. (v   -r   )(x   +y   ) 

L 

. . vzr r7r 1 
3A      -x (rz-zf)  +  (xy-yx)(yz-zy+ —^-)  — 

s7 = 
/ 2 -2w 2

L 
2\ (v  -r   )(x   +y   ) 

5A        f (xy-yx) 
öz 2.   2    .2, 

r   (v   -r   ) 

dA _ (yz-zy) 
c>x 2    .2. 

r^v   -r   ) 

^A _      (xz- zx) 
^y~ ~  ~.   Z    .2. 7 r(v   -r   ) 

3A _ - r      / 5A \ 
Bz r        I   dz    ) 

r (radius) 

AL - X_ 
}X r 
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^=0 
ax 

v (velocity) 

3v 
=  0 

ax 

• T 
3v       X1 

ax 

Element -P) 
a (semi-major axis' 

2 
da 2 __.,___-   >   _ rv 

ar"(2-X)2 »* 
where X = —— (^ F 2) 

da _ Xr_   / da \ 
dv ~  v     \ dr ) 

da      da _ da      da 
da = d6 " dß " dA" 

e (eccentricity) 

de _ p (X-l) „,>^-r~ « - a M -^2 
where p = a (1-e^) (e ± 0] 

dr ~       2 
r   e 

de_ _ 2£   / de \ 
dv "   v      \ dr  / 

3® -  — where y     = —  sin ß cos 
dß a 7">        e 

de  _  de_      de  _  de   _  ^ 
"da "  d6 "  dB      d^ 
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i  (inclination) 

di •    i     n\ •^j- = sin (a-u) 

di 
55 =  - cos  6 cos  (o--0) 

di_  _ dj_ _ _di_ _ di_ 
dcy ~ dß ~ ör     3v = 0 

C (longitude of ascending node) 

dO _  -cos (er-P) 
36 "        tan i i i 0 

dO       -sin 6 
dA 2 . 

sin    i 

an=1 
do- 

o£ _ dO _ dP _ 
dQ  ~  dr "  AV "  U 

UJ (argument of perigee) 

do) _ cos     (<y-Cl 
B6 "      cos A A^ 

_du, _   , (U 
oB " Ä + ae where x      = —  cu        e 

du:  _ cos 6 sin (a?-Q) 
^A ~ sin i 

t 
du;       V0i 
dr 2 

er 
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do:      2y. jj 
^v       erv 

|2-= o 

T (time of perigee passage' 

•^Ü" 

^up      \     r   e    / 

where M is mean 

anomaly 

- -2ray 
3T 7

'-ü Bv- ,-     (*£)*1    ^    M(^) v  ^p       \     r   e    / 

5T        ST   _  $T  _ 
hex " B6 " ^A~ U 

(3T 

3T ^Tt    dE 

SR       ÖEt    3R 

p (period) 

t2 = 4 E = 3- v ^a      Z   a ^f 
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c 
r    (apogee) 

or r 
a a 

c>a = —-  =   1+e 

or. 

"oT 
= a 

r    (perigee; 

ör r 

Or 

de 
P   = -a 

oT, 
(All other terms of -5-=-   are  zero. ) 

5E. 
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SECTION 4 

PROGRAM STRUCTURE 

4. 1 GENERAL 

TRACE is written in the FORTRAN language,   to be used with the IBM 

709/7090 FORTRAN Monitor System.     The basic construction of the program 

is a series of independent links,   which are  connected by the CHAIN feature 

of FORTRAN.     Within each link there is  a series of large blocks,   or major 

subroutines,   each of which makes use  of many smaller  routines. 

This  design was  chosen for  TRACE for several reasons.     First,   the flow of 

computation is easy to follow and understand,   both in general and in detail, 

by relative newcomers as  well as by the authors.     This is an important 

consideration   in facilitating modifications to an intricate but continually ex- 

panding  program such as TRACE.     Because of the subroutine structure of 

TRACE,   most of the presently projected additions can be made by changing 

one or two  routines with no possibility of interfering with contiguous 

segments. 

TRACE is  restricted to use with the 709/7090 by only one characteristic— 

the occasional utilization of FAP.    In general,   the FAP subroutines are short 

and few.     In only one link ( TRAIN,   the tracking data input link) do they play 

a major part,   and even in  this   case they can be  simply replaced.     It was felt 

desirable to  replace the  FORTRAN input statements by buffering routines 

designed specially to handle  large amounts of fixed format radar observa- 

tion data cards. 

TRACE is  therefore an extremely flexible program partitioned into five 

major links.     A description of these links follows and general flow charts 

(Figures   10 through  15) appear at the end of this section. 

( 
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4. 2 THE LINKS 

4. 2. 1     CHAIN 

This is the only program that must be executed regardless of the mode in 

which TRACE is to be used,   CHAIN is divided into three sections.     The 

first -section reads basic data,   but not station locations,   or tracking data, 

or the specifications for data generation or error analysis.    It also prints 

a header,   sets  several options to their nominal values,   and computes the 

Julian Date and the orientation of the Earth.     The second section initializes 

the trajectory parameters,   and  reads in extra input for GAIN or FEIGN, 

if the corresponding mode is being executed. 

The third section is  executed only during the orbit determination mode of 

MAIN (see paragraph 4. 2. 3) .     It contains  the  differential correction pro- 

cedure and the corresponding output.     Control is alternated between MAIN 

and this   section of CHAIN during the   orbit determination mode. 

4. 2. 2    TRAIN 

The tracking input link,   TRAIN,   reads  radar  station location and observa- 

tion data.     This data may be  on the  BCD input tape produced by the IBM   140 1 

or on a binary tape  previously written by TRAIN.     For real-time tracking 

exercises,   the  card reader will be used.     The   observations are  sorted 

chronologically,   and a compacted list is  produced,   which eliminates  storage 

corresponding to blanks in the information reported.     In   this   way,   approxi- 

mately two thousand observations can be handled in core (on a 32K machine) 

without resorting to intermediate tapes. 

On  option,    TRAIN  produces   a   binary  tape   containing   the   sorted  and 

compacted observation data,   to be used either on successive  runs or the 

next case of the  same  run.     This data has been transformed to the  standard 

set ( R,   A,    E,   R,   P,   Q,   P,   O at present),   and all units have been converted 

to an earth-radii-minutes-radians system.    Observation times are  reduced 

to minutes  from midnight of epoch. 
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In addition,   TRAIN prints  the tracking input,   and decodes and prints input 

concerning parameters to be solved for by differential correction. 

4. 2. 3 MAIN 

MAIN has two modes  of operation:    trajectory only,   and orbit determination. 

The first is a  straightforward computation of the  trajectory determined by 

the initial conditions,   using whichever of the available methods has been 

designated.     Output is  a time history of position and   velocity of the vehicle, 

and various other  related quantities,   at any  specified combination of print 

intervals. 

The  orbit determination mode utilizes both the  trajectory block and a radar 

block.     These  two segments  combine to produce  residuals and partial 

derivatives  of the  observations  with respect to the parameters being studied. 

The original nonlinear problem is  solved iteratively by differential correc- 

tion.     Residuals are  formed,   corrections  computed and applied and the entire 

process is   repeated either a specified number of times  or until convergence. 

Convergence  is defined to be the point at which no further improvement can 

be predicted in the  residuals  (the differences between measured and computed 

observations).    Divergence,   defined as an over-all increase in the residuals, 

is also possible.     In this   case,   the last best solution is  retrieved and the 

corresponding system  re-solved with more  stringent bounds on the 

corrections. 

Output from MAIN ir. this mode  consists  of the  residual at each observation 

time,   and the pertinent results  from the  differential correction n_»utines 

including initial conditions,   corrections,   and the  correlation matrix.     The 

trajectory output and a time history of the normal matrix and its inverse are 

also available if desired. 

4.2.4 GAIN 

Steering data for  the radar stations must be  supplied in the form of separate 

listings for each  station.     Although the  computations involved are basically 

4-3 



those of the computed observations produced chronologically in MAIN, the 

required output form, station-by-station listings, imposes a considerable 

sorting problem. 

Utilizing the trajectory block and a simplified radar block,   GAIN proceeds 

so as to completely fill core with chronological ephemeris data,   which is then 

sorted into listings that are station-by-station for the period of the data in 

core.    (Further sorting could be added upon completion if a station-by- 

station listing for a longer time period is desired. ) 

GAIN requires as input a list of station locations and a definition of the data 

configuration desired from each.    Any function,   not necessarily an observa- 

tion,   could be coded and selected for output.    Normally,   however,   output 

will be some type of radar observation.     Data is produced only for those 

periods during which the vehicle is visible to the station; optionally,   rise 

and set times only are calculated. 

4. 2. 5     FEIGN 

The simulation link,   FEIGN,   is designed to permit studies of the large 

matrices involved in tracking system design without  requiring their genera- 

tion by one program and manipulation by another.    To save storage space, 

the simulated data is  not computed explicitly,   but is  instead inferred from 

a list of data types and frequencies for given stations.     FEIGN employs the 

trajectory and radar blocks exactly as they are used in the differential 

correction path of MAIN.     However,   since there are no actual observations, 

this link checks for visibility at each point and computes derivatives,   etc. , 

only when physically applicable. 

The main matrix calculation being made in FEIGN at present is the calcula- 

tion and inversion of the normal matrix associated with the parameters being 

studied (i. e. ,   P-parameters).     The inverse of the normal matrix is the 

covariance matrix of the P-parameters.    This covariance matrix may be 

updated in time (by use of the variational equation partials) and transformed 
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to other systems.     These other systems are:    Cartesian; Orbit Plane; 

Spherical;  Element; and Period,   Apogee,   Perigee.     The effect of specified 

parameter errors (Q-parameters) may be included in any of the above 

matrices.     Any combination of matrices,   with or without the Q-parameter 

effects,   may be output. 

c 

X 
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SECTION 5 

USAGE 

5. 1 INTRODUCTION 

This  section describes the input,   deck setup,   and output connected with the 

use of TRACE (in Sections 5.2,   5.Z.6 and 5.3,   respectively).    It is designed to 

answer most questions pertaining to the use of the program.     Each function- 

trajectory,   tracking,   data generation,   and error analysis  -   is treated 

separately.     A detailed explanation of each is  contained in Section  1. 
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5.2 INPUT 

This section is divided into six parts.    The first is concerned with the 

Basic Data input common to all functions .    The next four parts cover 

the functions of trajectory,  tracking,  data generation,  and error analysis. 

Each part,   together with the Basic Data input,  is independent and completely 

describes the input for the function involved.    Finally,   the arrangement of 

the program and input deck is described. 

TRACE utilizes the following four types of load sheets for input: 

• FINP for Basic Data 

• Station Location Data 

• Radar Observation Data 

• Error Analysis and Data Generation Specification 

Sample load sheets and summary descriptions are included at the end of 

each part. 

The following three points of information will make the FINP load sheets 

easier to use. 

a. Although the load sheet imposes an order on the input,   the 
actual order of the cards is (almost) immaterial,   the only 
restriction being that all values with nonsymbolic locations 
are located relative to the last previous symbol.    In the 
case of two appearances of the same location symbol,  the last 
value read is the effective input. 

b. A prefix (Columns  1,   19,   37,   and 55) determines the mode 
of input.     A blank indicates that the following value is to be 
read as a floating point number; an I, as a fixed point 
decimal; D,   BCD (Hollerith); and B, as an octal.    The END 
cards are used because the prefix E terminates the FINP 
read. 

c. Any card for which no value appears may be omitted.    Blank 
fields are ignored except for D prefix (BCD). 
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5. 2. 1 Basic Data 

By definition,   Basic Data is that which is common to all functions.     The re- 

quired Basic Data includes the list of functions to be performed,  the specifi- 

cation of the trajectory (date,   time,   and initial conditions),   the force model 

to be assumed,   and the constants and parameters to be used in the trajectory 

integration.     (The force model,   constants,   and parameters are "required" 

data,   but standard values are provided.    The replacement of these quantities 

is thus "optional. "    See the appendix for a list of the standard values.) 

There are also options,   which are common to all functions,   and thus are 

contained in the Basic  Data input.     These include  identification information, 

specification of the ballistic (drag) coefficient and atmosphere model,   se- 

lection of other-body perturbations,   and output print time specification. 

A line-by-line explanation of the load sheet follows.     An asterisk refers to 

a special feature,   which is explained below the example. 

5. 2.  1. 1 Required Input 

Line   1   -  Functions  To Be  Performed 

i BD| ITIN 1 2 4l 

This line contains the ordered list of all functions TRACE is expected to 

perform on a given run,   using the code: 

tracking data input = 1 

tracking computations = 2 

trajectory only = 3 

data generation = 4 

errcr analysis = 5 

Up to 12 functions may be selected.     When this list is exhausted,   TRACE 

will reset certain standard options,   prepare to run another sequence of func- 

tions,   and read Basic Data,   or stop if there is  none.     The example  given would 

be for a tracking case (functions   1 and 2) followed by a data generation case. 
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Lines 2 through 8 - Epoch 

2 I YEAR 1963 

3 I MNTH 6 
4 1 DAY 15 

5 TZNE 0 

6 HR 12 
-7 / M1N 45 
8 SEC 15. 5 

The year,   month,   and day should be input.    The X axis is then directed to the 

vernal equinox (see paragraph 3. 1. 1).    (* Line 2.    If the year is input nega- 

tive,   the X axis will be directed to the longitude of Greenwich.)   The hour, 

minute,   and second refer to midnight,   zone time.    GMT is time zone zero. 

Lines 9 through  15  - Initial Conditions 

9 I ICTYP 2 

10 IC 125. 1 

11 2 31. 23 
12 3 89. 
13 4 14. 

*   14 5 22600114 

*   15 6 25117. 3 

Line 9 indicates   the type of initial conditions entered in lines  10 thru 15. 

For ICTYP = 

1 

2 

IC's are: 

Earth-centered inertial cartesian coordinates (x, y, z, x, y, z 
in feet and ft/sec - see paragraph 3. 1. 1. 1). 

Spherical coordinates (a, 6, ß, A, r, v in degrees,   feet and 
ft/sec - see paragraph 3. 1. 1.2). 

(*Line 14. If r is negative, it is interpreted as height 
above the earth's surface. *Line 15. If v is negative, 
circular velocity is computed and used. ) 

Orbital elements (a,e,i,fi,u, T in feet,   degrees,  and 
minutes  - see paragraph 3. 1. 1.3). 

The same as 2 above with longitude replacing right 
ascension. 
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5. 2. 1.2 

5 No IC's are input.     The last trajectory point of the last 
previous run is used. 

6 No IC's are input.     The corrected initial conditions from 
the last previous tracking run are used. 

8 Same as  1,2,   and 3 but in units of earth radii,   minutes, 
and radians    The type is determined from the last previous 
tracking run,   or from CPRAM (see line  37). 

9 Same as  1 but in units of earth radii and earth radii/min. 

0 No IC's are input.     For a tracking run two RAE sets are 
used from the data to calculate a set of initial conditions 
(see paragraph 3.6.7). 

Optional Input 

Lines   16 through 20 -  Drag 

16~|! DRAG . 01 
17 III 2 

18 i'i 3 

19 |i 4 
20 | 5 

CDA 2 Line   16 contains the drag parameter —TTJ—   in ft  /lb. 

Line  17 contains the atmosphere model specification. 

If DRAG(2) is: 0 

1 

2 

3 

4 

use: ARDC 59 Model 

Lockheed Model 

Paetzold Model II 

Paetzold Model I 

L. F. E.   Model 

If line   17 is a 2,   3,   or 4,   lines   18 through 20 contain three  quantities used 

in the Paetzold calculation. 

Line  18 contains F - solar radio flux. 

X 

Line   19 contains A     - planetary magnetic index. 

Line 20 contains g(a) - plasma intensity coefficient. 
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Drag Table Option 
cnA CDA 

Think of the drag parameter as two terms:       T^-     X C' (M,h).    —=*=- is a 

constant and can be differentially corrected by the use of the variational eq- 

uation.     C^(M,h) is a function of Mach No.   and/or altitude; it is then input as 

a table. 

CDA 

W input into location DRAG, Normally C' is set equal to 1, and with 

TRACE operates as before. If the use of a table is desired, additional inputs 

must be made (marked with * below). The following is the use of the C block 

where the tables are stored. 

C(50) 

C(51) 

C(52) 

C(53) 

C(54) 

C(55) - C(72) 

C(73) 

C(74) 

C(75) - C(100) 

C' (=1,   or interpolated table value) 

if = 0,   do not use tables 

if negative,   use Mach table only 

if positive,   use Mach table and altitude table 

altitude above which altitude table is used and 

below which Mach table is used.    (Needed if 

C(5 1) is positive . ) 

(not used) 

(used by interpolation routine) 

altitude table.    (Monotonie increasing stored as 

altr   C^,  alt2,   G'D .  .   .   altn,   C^,   0,   0) 

(not used) 

(used by interpolation routine) 

Mach No.  table (stored as altitude table above). 

Line 21 - Print Code 

21 Bö PRCDE 

•Ü u q< > <u u 3KH3 

X 

W vVV v/ 
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c 

c 

An X will cause the corresponding information to be output.     (The boxes 

marked  V   will be printed only at specified print times  - see below. )    See 

Section 5.3  for output examples. 

Lines  22 through 28  - Print Time  Vector 

22 
n 23 

24 
At 1     25 

26 
At- 27 
^2" 28 

I PRTIM 0 
i 

I 2 2 
3 0 

4 5 
5 90 

6 15 
7 1440 

Sequence of print times for output selected in PRCDE.     There may be 

n(n < 9)  sets (line 23);  for the i       set output is  from t.    .  to t.   at intervals  • 
l-l l 

At..    All times are in minutes from midnight if PRTIM =  1; from epoch if 

PRTIM =  0.     At.   =  C means do not print in this interval.     Additional cards 
l c 

may be inserted here if 3 < n < 9. 

( 

Line  33  -  Extra Body Perturbation 

.        »ll CTAPE 7 

If CTAPE is non-zero,   then other-body perturbations will be computed 

from  coordinate tape on unit number CTAPE,   using body selectors in INTEG 

and relative masses in C. 

Line   34  -  Eclipse Indication 

34gl |XTAPEJ 1 

If XTAPE is non-zero,   then the position of the  sun will be determined at 

each print time from the coordinate tape on unit number XTAPE.     An indi' 

cation is then printed as to whether the sun is visible from the satellite. 
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r\ 
5. 2. 2 Trajectory Only 

5. 2. 2. 1 Required Input 

There is no required input in addition to the Basic Data. 

5. 2. 2. 2 Optional Input 

Lines 37 through 39 - Variational Equation Partial Derivatives 

37 M D 
38 ID 

39 ID 

C PRAM 2 
DPRAM 
,6PRAM 

X X 
X X 

An X in a box causes the variational equation for the corresponding parameter 

to be solved.     The partial derivatives are printed out if the Variational Equa- 

tion box is marked in PRCDE (see Line 21). 

CPRAM - Initial condition parameters.     The first box specifies the type of 

initial conditions.     The succeeding boxes indicate the particular parameters 

desired.    The boxes are ordered as follows: 

Type 

1 X y z X y z t o 

2 Of 

a 

6 

e 

0 A r V t o 

3 i 0 UJ T t o 

DPRAM and OPRAM - Differential equation parameters.    The boxes are 

ordered as follows: 

DPRAM   Drag n J2 J3 J4 J5 J21 j J31 J41 J22 J32 J42 

OPRAM   J33 J43 JAA 44 hi X31 X41 X22!X32 X42 X33 X43 X44 

This list applies only if the full set is used.    See the appendix for the ordering 
of shorter sets. 
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Line 42 - Trajectory Comparison Option 

41 
42 m I IFLAG 

15 10 

If IFLAG(15) is it contains the logical tape number of the 
tape,   which is tc contain the  reference 
trajectory 

a regular trajectory run is indicated 

it contains the logical tape number of the tape 
containing the reference trajectory.    The ref- 
erence trajectory is read in and differenced 
with the trajectory of the present case.     These 
differences are resolved into the orbit plane 
system and are placed on the binary plot tape. 
The binary plot tape number is    IFLAG(15)    + 1 

Line 44  - Analytic Trajectory Option 

43 
44 I C 

49 

If C(49) is non-zero,   the trajectory is not integrated.    Instead,   analytic 

approximation formulae are used to determine the trajectory (see paragraph 

3. 6. 6).     C(49) should be a positive integer; then the formulae are recomputed 

every n      orbit where  n =  C(49). 
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Table  1.     TRACE -  Basic Data and Trajectory Input 

X-1 7090   INPUT  DATA AEROSPACE CORPORATION 
COMPUTATION & DATA PROCESSING CENTER 

PROGRAMMER - -KEYPUNCHED . 

1 7 73 

HI 
H2 

l a 

T5 

2 
20 

r 
2» 

61 

17 
36 
63 
7f 

SYMBOL        i LOO VALUE EXP. 

1 P ITIN | 
2 1 YEAR 
3 1 MNTH 
4 1 DAY 

5 TZNE 
6 HR 

7 MIN 
3 SEC 

9 1 ICTYP 
10 IC 

11 2 
12 3 

13 4 
14 5 

15 6 
16 DRAG 

17 1 2 

18 3 

19 4 

20 5 

V^r< u 8«Ac» • 

11 ppr.nF 1 II [III 

22 I PRTIM 
23 I 2 
24 3 

25 4 

26 5 

27 0 

28 7 

29 
30 

31 

32 

33 I CTAPE 

34 1 XTAPE 

i 
19 

58 

20 

86 

7 
26 
43 
61 

7 

1 

SYMBOL LOC. VALUE EXP. 

37 D CPRAM 
38 D DPRAM 
39 D (J)PRAM 

41 IFLAG 
42 I 15 
43 C 
44 49 

AEROSPACE   FOI 
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Table 2.     Basic Data and Trajectory Input Description 

2- 
9: 
10 -15: 

16: 
17: 

18: 
19: 

20: 

Itinerary.     Specify order of compu-       37: 
tations. 
1-Tracking data input,   2-Track, 
^-Trajectory only, 
4-Data generation, 
5-Error  analysis 
Epoch 
Type 12 3 4 of initial conditions 
IC      x a a I 

y 6 e 6 
z B i   ß (ft-sec-deg) 
x AC A 
y r j) r 
z v T v 

NOTE:    If r is negative it is inter- 
preted as height; if v is neg. ,   cir- 
cular velocity is computed and used 
CDA/W.     (ft^/lb) 
Atmosphere model specification 

0 ARDC    59 
1 Lockheed 
2 Pactzold II 
3 Paetzold I 
4 L. F.E. 

F           -  solar radio flux 
A          - planetary magnetic index 

Initial Condition Parameter Specification: 
TYPE [X] to specify: 

1 X y z X y 
2 a 6 6 A r 
3 a e i n U) 

CTTT I    1   1   I    I 
38-39:   Differential Eq.    Parameter Specification: 

X     to  specify: 

CDA 

W u    J2    J3    J4   J5   JZ1    J31 

DPRAM i i  i i  i n 
J41   J22   J32   J42 

II I I   ~1 

P 
g(a) - plasma intensity coeff. 

J33 J43   J44   L21 L 31   L41 
OPRAM 1 1         1          1 I 1 

L22 L32 L42 L 33 L43 L44 

1        1        1         1 1 
42: 

44: 

Trajectory comparison option and tape 
specification. 
Analytic trajectory option. 

h»      o   , 
O «j « y a- 

§ «J « 
a- 

cr • P w   «j 
u £ ö TJ O   (0 
ni _H 0   CL H .Ü 
> <\) V    3   N    O 

21: X to print    fl   I   I   I    I   I    I   IT| 
22-28: Print at t=t0(Ati) tjfAtz). . . (Atn)tn ir, 

minutes from midnight if PRTIM=1 , 
from epoch if 0. 

* This list applies if (J)BJT = 4.    If <t>BJT = 3 
replace with shorter list J? . ,   J,.,   J77'   ^^2.'   "^33 

and L21,   L3I>   L22,   L32,   L33-   If (J)EJT = 2 

replace with J?1»   J-,-, and L. .,   ^-"p?- 

23 - n (<9),   24 - t 25- At 

26 - t. 27 - At,,   28 - t. 

33: 

34: 

Extra body perturbation option 
and coordinate  tape number. 
Eclipse indication option 
and coordinate  tape number. 

etc. 
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:... 

5. 2. 3 

5. 2. 3. 1 

Tracking 

Requi red Input 

Lines  33 through 37  - Parameter Specification Boxes 

«1 h CPRAM 1 X^ X 
34 lD 

DPRAM X X XX 

35 ln 
d)PRAM X X X 

36 RPRAM A B X 
37 1 I 

An X in a box causes the corresponding parameter to be used in the differen- 

tial correction solution, 

CPRAM - Initial   condition parameters.     The first box specifies  the type  of 

initial condition.     The  succeeding boxes indicate the particular parameter 

desired.     The boxes are ordered as follows: 

Type 

1 X y z X y z t 
O 

2 Cf 6 6 A r V t o 

3 a e i a ÜJ T t o 

DPRAM and OPRAM - Differential equation parameters.    The boxes are 

ordered as follows: 

DPRAM Drag M- J2 J3 J4 J5 J21 J31 J4I J22 J32 J42 

OPRAM J33 J43 J44 X2! X31 hi X22 X32 
A 

42 X33 X43 X44 

RPRAM  - Radar parameters.     The first two boxes of each line contain the 

station name.     The  succeeding boxes  indicate the parameters desired.     They 

are ordered as  follows: 

L t A R A E R T 

This list applies if the full set is  used.     See Appendix A for explanation of 
standard set. 
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where: 

L = Latitude 

i.   - Longitude 

A = Altitude 

R = Range Bias 

A = Azimuth Bias 

E = Elevation Bias 

R = Range Rate Bias 

R = Time Bias 

Additional cards may be added for more radar stations.   Note:    The number 

of X's in CPRAM + DPRAM + OPRAM must be < 15.    The total number of 

X's must be  < 30. 

Lines 4 1 through 46  -  Bounds 

41 BNDS 100 
42 2 100 
43 3 . 1 -5 
44 4 

45 5 
46 6 

A bound must be entered for each parameter selected above in the same 

sequence. For each iteration of the differential correction process, the 

change in each parameter is: 

a. Less (in absolute value) than the corresponding bound if 
this bound is positive. 

b. Zero if the  corresponding bound is  zero. 

c. Unrestricted if the corresponding bound is negative. 

Lines 49 through 65  -  Sigmas 

49 SIGMA 100 
50 2 . 05 
51 3 .05 
52 12 1200 

53 13 .05 
54 14 . 1 
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Sigmas are the weighting factors for the  radar data.     Entered here are a set 

of radar sigmas for R,   A,   E,   R,   P,   Q,   P,   Q,   u,   v,   r in that order,   in feet, 

degrees,   and seconds.     Ten sets may be entered,   1=0,   1,   2,   . . . ,   9.     This 

value of I is the one to be entered on the Station Location Card,   column 5. 

Additional cards may be inserted here if necessary. 

5. 2. 3. 2 Optional Input 

Line  29  -  Tracking  Termination Time 

29~W~ 21 

If PRTIM(21) is not zero,   then only observations prior to this time (in 

minutes  from midnight) will be  used in the orbit determination. 

Line  57  -  Maximum Number of Iterations 

57 ll MAXIT 14 

If the differential correction process has not converged at the end of MAXIT 

iterations,   the  run will stop. 

Line 58 through 60 - Data Tape Specifications 

58 
59 
60 i I IBCDI 

I IB INI 

I IBINU 

IBCDI.     If the   radar  observation and station location information is to come 

in on a BCD tape other than A3  (the normal FORTRAN system input tape),   the 

tape number must be specified here.     It may be any channel A tape  not used 

by the system;  only the numeric designation is   required. 

IBINI.    If TRACE is to input a binary tape containing compacted radar data 

(produced by a previous  run),   IBINI must be non-zero.     If IBINI < 5,   the 

tape  is assumed to be on B5;  if IBINI > 5,   it is assumed to be  the tape 

number (Channel B only). 
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IBINU.    If IBINU is non-zero,   TRACE will produce a binary tape containing 

the sorted processed radar observation data for later use.    The same tape 

numbering convention holds as for IBINI. above.    If IBINU is non-zero,   after 

a tape is produced IBINI will be set for the corresponding tape unit; successive 

cases of the same run will therefore not require that the observation input be 

repeated.    (The tracking data input function must still be selected by ITIN in 

order to read the tape. ) 

Line 61 - Refractivity 

M I    IREFR   1          

The equation used to correct elevation data is:    E = E' - n  .  cotn E' if E' 
si 

>0. 1 radian,   and E = E' - 

radian,   and n   .  4 0. 
si 

1 
n  . x 10 

si 
80 

1000  112 + 1000E'        6 + 1000E 
) 

if E'  < 0. 1 

E1 is the input elevation.     The n  . are read here,   i = 0,   1,   2,   . . . ,   9.     This 
Si 

value of i is the one to be entered on the Station Location Card,   column 6. 

Additional cards may be inserted here if necessary.    Nominally, 

n       = 312. 0 x 10"6. so 

Lines 63 and 64 - S(j)S 

] 6 3 • D 

M. 
SOS A AA B 

SOS contains up to nine station names (2 blocks per name).     For each of 

these stations,   the root mean square (rms) and the square root of the sum 

of the squares (SOS) of the residuals after division by the radar sigmas are 

printed out. 
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Lines 65 and following - Constraint Matrix 

65 KNST 4 
66 BLIST 1 

1 
1 

2 
2 
1 
3 

3 
1 

4 
4 

1 
5 
1 

-1 

6 
2 

. 5 
7 

5 

1 

These quantities can be best explained by example.    Assume that there are 

n parameters  to be  solved for (p       p       . . . ,   p   ) = p.     The ordering of the p. 

corresponds to the order of the X's in CPRAM,   DPRAM,   and RPRAM.     Also 

assume that there are m linear constraints to be placed on these parameters. 

For example,   if n = 6,   m = 2,   these might be p.  + p_ = 6,   p_ - 2p,   = G.     Then 

KNST is equal to the number of effective (unconstrained) parameters,   or 

4(= n-m). 
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BLiIST,   the constraint matrix,   is obtained as follows: 

a. State the problem in the form p = Bp + c,   where the  p  are 
the effective parameters.     For the example given,   this 
takes the form 

< 

*1 

P2 

P3 

P4 

P5 

PeJ 

1000 

0100 

0010 

0001 

1000 

0.5 0 0 

Pi 
0  1 

Pz 0 

• P3 + 
0 

P4 0 

6 

0 
L           „ 

b. 

p B p c 

Input the non-zero elements of the augmented (n+1) by 
(m + 1) matrix 

78) 

B 

0 

where the element b— is input as i,   j,  b^;.     The input for 
this example is shown above. 

Lines 73 and 74 - Time Delay Correction 

73 
74 1 3 

If C(3) is non-zero,   a time correction will be applied to the radar data.     C(3) 

should contain ± the speed of light (earth radii/min). 

Then,   t1 = t + R where R is the range. C(3] 

Line 75 - Data Editing 

75 |;     13 1 
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'    '  \*^-        ^n-zero,   the  radar data will be edited on the second and following 

iterations.    Data<t>>i.nts will be discarded with residuals greater than: 

a. The input sigma times   |C(13)|  if C(13) is negative. 

b. The statistical sigma from the previous iteration times 
C(13) if   3(13) is positive.    (A sigma is calculated for each 
station and data type. ) 

The above input should be  followed by an END BASIC card.     If the  radar data 

is input from cards.   Staticn L-ocation Data and Radar Observation sheets 

should ot  filled out  followc d by an END DATA card.     If the data is input from 

BCD or binary tape,   Lhe END DATA card follows the END BASIC card. 

5. 2. 3. 3 

Column 

I-7 

5 

9-17 

19-2? 

29-36 

39-39 
(41-42) 

Station Location Data 

ST.     Two letters thai serve as identification for a station. 
\*o tv.'f. StAtic? s  should have the same  symbol 

Type  of radar observation sigma to be applied to data from 
this  station. 
The sets of sigmas input with the Basic Data are numbered (from 
0 to 9) in the  order in which they are  read in.     (See Line 49. ) 

Type  of refractivity correction to be used for elevation readings 
from this  station. 
R.efractivities are numbered in the order they are input in the 
Basic Data.     (See Line 61.) 

North latitude of the  station in degrees 

East longitude of the  station in degrees 

Altitude  of the station in feet 

If this  station  reports  P or P data  (Q or  Q),   these columns contain 
the  two letter symbols  for the associated station(s) of the tracking 
configuration.     Each such associated station must appear on a 
separate Station Location Card,   but it is not necessary for 
columns  38-42 to be filled out on the latter. 

The last Station Location Card must be followed by a card with the letters TR 

in columns   1-2.     There may be up to 50  stations  entered. 
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5. 2. 3.4 

ST 

GMT 

DAY 

HR 

MIN 

SEC'S 

TY 

TY 

1 

2 

3 

4 

5 

6 

7 

Radar Observation  Data 

Station call   letters,    which must correspond to a Station Location 
Card 

Number   of  hours   to   be   added to the observation time to give 
Greenwich   Ivlean Time 

The values   indicate   the   time  of the corresponding observations 

Type  of   observation 

Col.   26-39 

Range 

Right Ascension. 

L 

Hour Angle 

Af 

LI 

R 

P 

P 

Col.   41-54 

A.Z. Lmuth 

De clination 

rv* 

De clination 

At 

L2 

Q 

Q 

Col.   56-69 

Elevation 

N 

L3 

The last Radar Observation Card must be followed by a card with the letters 

TR in columns 1-2. (An END DATA card must also follow if no nonStandard 

input is included. ) 

5.2.3.5 Flocking   Option 

For large numbers   of   radar   observations (>1000) the data should be divided 

into "Flocks. "    Flocks   may be   of arbitrary size (but each <1000 observations; 

A control card with   the   letters   TF*  in   columns  1 and 2 is used to signal the 

end of a flock; any number   of these  may be placed among the observation 

cards.    The lasi flock  must   still be   terminated by a TR card. 

< 

5-20 



There are two restrictions to be observed.     First,   the observations must 

be in partial chronological order.     That is,   every data time of a given flock 

must be later than all times in all previous flocks.    Second,   the Basic Data 

quantity IBINU (Line 60) must be specified so as to produce a compacted 

data tape,   unless such a tape,   produced on a previous run,   is being used 

as input. 

The mechanics of this option are as follows.     The radar observations are 

read,   sorted,   processed,   and written on tape,   one flock at a time,   by TRAIN. 

If more than one flock is found to be present,   the differential correction 

process in MAIN reads the tape  and computes  residuals and the normal 

matrix for one flock at a time. 

It is very strongly recommended that large sets of data be broken into 

flocks; looping and strange halts result from overre?.ding observations with 

the program. 
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0 
Table 3.    TRACE - Tracking Input 

X-1 7090  INPUT  DATA AEROSPACE CORPORATION 
COMPUTATION & DATA PROCESSING CENTER 

PROGRAMMER - .KEYPUNCHED. 

1                                        7 73 

HI 

H2 

1 
1 1 
1 37 
j 85 

2 
20 
31 
M 

• 
26 

» 1 

7 
SB 
S3 
71 

1 
IB 
37 
SB 

2                                     7 
20                               2D 
3«                                43 
SO                                «I 

17 
SB 
S3 
71 

SYMBOL        I    fa LOC. VALUE EXP. SYMBOL        j PR LOC. VALUE                           EXP. 

1 D I TIN 1.1 i i I 37 D 
2 I YEAR 38 D 
3 I MNTH 39 D 
4 I DAY 40 D 

5 TZNE 41 BNDS 
6 HR 42 
7 MIN 43 
8 SEC 44 

9 I ICTYP 45 
10 IC 46 i 

11 2 47 
12 3 48 
13 4 49 SIGMA 
14 5 50 
15 6 51 
16 DRAG 52 
17 I 2 53 
18 3 54 
19 4 55 
20 5 56 

>*<tl                  .   M Ü)       °   « 57 I MAXIT 
O rt»-J 

id 

5 S v H a 58 I IBCDI 

ÄSttf 6 3 JS, x *i 59 I IBINI 

Rift* 13 u 3 N T3 60 I IBINU 
21 D PRCDE r^ 61 REFR 
22 I PRTIM 62 
23 I 2 63 s6s 
24 3 64 
25 4 65 I KNST 
26 5 66 I BLIST 
27 6 67 

28 7 68 

29 21 j 69 
30 70 
31 71 
32 1 72 

J3 BD CPRAM 73 C 

34 ID DPRAM 74 3 

35 ID (})PRAM 75 13 

36 ID RPRAM 1 76 • 
>ACE   FORM   2423 
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Table 4.     Tracking Input Description 

2-8: 
9: 

10-15: 

16: 
17: 

18: 

(ft-sec-deg) 

Itinerary.     Specify order of compu- 
tations. 
1-Tracking data input,   2-Track, 
3-Trajectory only, 
4-Data generation, 
5-Error analysis. 
Epoch 
Type  12 3 4   of initial conditions 
IC       x a a l 

y 6  e  6 
z 0 i    B 
xAQA 
y r o;    r 
z v T   v 

NOTE: If r is negative it is inter- 
preted as height; if v is neg. ,   cir- 
cular velocity is computed and used. 
CDA/W.     (ft2/lb) 
Atmosphere Model Specification 

0 ARDC 59 
1 Lockheed 
2 Paetzold II 
3 Paetzold I 
4 L. F. E. 

F -  solar radio flux 
A„       - planetary magnetic index 
g(a.)    - plasma intensity coeff. 

CDA * 
H J0 J-. JA J, J01   J,,  J.,  J- ~W  * J2 J3 J4 J5 J21  J31 J41 J22 

DPRAMI 1   f     |     |     |     1       1        |        |        | 

J32 J42 

J33 J43 J44 L21 L3l J41 L22 L32 L42 
OPRAMl       I        I        I        1 1        1 111 

L33 L43 L44 
*or shorter lists depending —• • • -i 
on OBJT J 1 1 ' 
36-40:     Radar Parameter Specification. 

ST       L,    }.    ARAERT 
X to solve for: I      1    1     I     I      1    I    I    I    I   1 
ST: Station Symbol 
L: 

>* • 01 

° a 
n   3 

6- c 
2    o 
rt   0)   ll 

0) 

E 
0,3 2«t. f —   ^ at 

m  d   •- *
J 

«r M u CflO n 
I, <u 0   CX II 
3 u (**<. > V O    3   N 0 

21: X to print !   I   I    M   I   1   I   I   I   III 
22-28: Print at t=t0(Atj )tj (At2). . .(At )t in 

minutes from midnigrTt if PRTlM = l, 
from epoch if 0. 

23  - n (<9),     24  - t   ,      25  -  At, 

26  - t 
o' 

27  -  At- 28  - t- etc. 

29: 
33: 

Fit only observations prior to tf 
Initial Condition Parameter 
Specification 
Type     X     to solve for: 

1 x 
2 a 
3 a 

x   y 
A   r 
0 <u T    I' 

n  I I  l-L-L-U 
34-35: Differential Eq.   Parameter 

Specification: 
X to solve for: 

R: Range Bias 
Station Latitude     A: Azimuth Bias 
Station Longitude E: Elevation Bias 
Station Altitude      R:Range Rate Bias 

T:Time Bias 
41-48:  A bound must be provided for every para- 

meter.     For each iteration of the differ- 
ential correction process,   the change in 
each parameter (a) Is  (in absolute value) 
less than the corresponding bound if said 
bound is positive,   (b) Is zero if the 
corresponding bound is zero,   (c) Is un- 
restricted if the corresponding bound is 
negative. 

49-56: Sigmas 
(R, A, E, R, P, Ö, P, O, u, v, r) 

I = 0, 1,2,... 
I is the sigma type as referred to by the 
Station Location Data. 

57: Maximum Number of Iterations. 
58-60:  Radar Observation Data Tapes 

58: BCD Input Tape if i A3. 
59: Non-zero,   < 5,   if compacted data is 

to be input on B5. 
60: Non-zero,   < 5,   if compacted data is 

to be output on B5. 
Refractivity. 
The names of no more than nine stations. 
For each of these stations,   the root mean 
square  (RMS) and the square root of the 
sum of squares  (SOS) of the  residuals is 
printed out. 
Number of effective  (unconstrained) 
parameters to be solved for. 

66-72:  Constraint Matrix Input 
74: Time delay correction. 
75: Data editing option. 

61: 
63-64: 

65: 
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5. 2. 4 Data Generation 

5.2.4.1 Required Input 

The only required input in addition to the Basic Data is the station location 

data and data on Data Specification Sheets I and II.     These will be described 

below. 

£ 
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J 
5.2.4.2 Optional Input 

Line  34 - Rise and Set Times 

I 34 Hi 
IF LAG 

If II- LAG(6) is 

0 all data will be printed (see sample output paragraph 
5.4.5). 

1 rise and set times only will be printed; Data Specification 
II not necessary. 

Rise and sets are at minimum elevation angle entered on Data Specification 

Sheet I. 

Line  35   - Input Contro) for Multiple Cases 

35 ll   7 

Station Location cards and Data Specification cards are always read when a 

4 or a 5  is  first encountered in the ITIN list.     In each following instance in 

the same ITIN sequence: 

if IFLAG(7) is 

Neither Station Location or Data Specification cards are 
input (same as previous case). 

Data Specification is input,  but Station Locations are not. 

Both Station Location and Data Specification are input. 

Line   36 - Observation Tape Generation 

I 36 I ETAPE   7 

If ETAPE is non-zero,   then a BCD radar observation tape will be generated 

on tape unit number ETAPE.     The tape format will be that of the tracking 

input data. 
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Lines 37 through 52 - Noise 

37 R Nd)ISE 0 12 3 4 0 0 5 
38 D RPRAM A A <3> X XX 

39 D © 
40 D $ 
41 PBIAS . 001 

2 30 
3 -. 005 
4 . 001 

49 SIGMA 50 
2 . 01 
3 . 01 
4 

If NOISE is non-zero,   the observations on the above tape and in the printed 

data generation output will contain normally distributed random noise with 

mean value given in PBIAS (Lines 41-ff) and standard deviations given in 

SIGMA (Lines 49-ff).     (NOISE starts random number generator.) 

If bias noise is to be used,   RPRAM (Lines 38 through 40) contain the radar 

observations to be biased.     The first two boxes of each line contain the station 

name.     The succeeding boxes indicate the parameters desired.     They are 

ordered as follows: 

38BD RPRAM 3R A E R T 

where: 

R = Range Bias 

A = Azimuth Bias 

E = Elevation Bias 

R = Range Rate Bias 

T = Time Bias 

Additional cards may be added for more radar stations. 
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PBIAS (Lines 41  - ff. ) contain the bias to be added.    The ordering is the 

same as the X's in the RPRAM boxes above. 

SIGMA (Lines 49 - ff. ) contain the standard deviation of the random noise to 

be added.     Entered here are a set of radar sigmas consisting of values for 

R,   A,   E,   R,   P,   Q,   P,   Q,   u,   v,   r   in that order,   in feet,   degrees,   and sec- 

onds.    I sets may be entered,   1=0,   1,   2,   . . . ,   9.    This value of I is the one 

to be entered on the Station Location Card,   column 5.    Additional cards may- 

be inserted here if necessary. 

Line 57  - F-efractivity 

[ 57 1    |RE~FR~ 

The computed elevation is altered to account for refraction using the following 

formula: 

E1 = E + n   .cotn E if E > 0. 1 radian (79) si \   'I 

and 

j     /n   . x 106 \ 
E'  = E+TÖÖ0^12S1+ 1000E-  6 + 1000EJif E< °'1  radian and nsi * °" 

(80) 

E is the computed elevation.     The n   . are read here,   i = 0,   1,   2,   ...   9. 

This value of i is the one to be entered on the Station Location Card,   column 

6.    Additional cards may be inserted here if necessarv.    Nominally,   n       = 
-6 '       so 

312. 0x10     . 
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Line 65 - Observational Variances 

65 ID CPRAM 
65 ID DPR AM 
67 |D OPRAM 

69 
70 1 !ATA 

501 1  

t 

If the standard deviations in the six observational quantities R,  A,   E,   R, 

A,   E,   are desired,   then 

a. The appropriate box must be checked on Data Specification 
Sheet II, 

b. A covariance matrix for trajectory parameters must be 
supplied in lower triangular form beginning at ATA(501) 

c. The  corresponding parameters must be indicated (as on 
lines 37-39 of the Basic Data Input sheet) in the CPRAM, 
DPRAM,   and OPRAM boxes. 

The above input should be followed by an END BASIC card and an END DATA 

card.     Station Location cards and Data Specification cards follow. 

C 

5. 2.4. 3 Station Location Data 

Column 

1-2 

5 

19-27 

ST.     Two letters,   which serve as identification for a station. 
No two stations should have the same symbol. 

Type of radar observation sigma to be applied to data from 
this station 
The sets oi sigmas input with the Basic Data are numbered 
(from 0 to 9) in the order in which they are read in.     (See Line 
49-) 

Type of refractivity correction to be used for elevation readings 
from this station. 
Refractivities are numbered in the order they are input in the 
Basic Data.    (See above.) 

North latitude of the station in degrees 

East longitude of the station in degrees 
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o 
29-36 Altitude of the station in feet 

38-39 If this station reports P or P data (Q or Q),   these columns 
(41-42) contain the two letter symbols for the associated station(s) 

of the tracking configuration.     Each such associated station 
must appear on a separate Station Location Card,   but it is not 
necessary for columns 38-42 to be filled out on the latter. 

The last Station Location Card must be followed by a card with the letters 

TR in columns 1 and 2.    There may be up to 50 stations entered. 

5.2.4.4 Data Specification 

Column Load Sheet I 

1-2 Station Call Letters 
These must correspond to the letters on some Station Location 
card 

9-16 Interval,   in minutes,   at which data for this station is to be 
generated; also testing interval for Rise-Set-only option 

18-23 Minimum elevation at which the vehicle is visible 

25-30 Maximum elevation at which the vehicle is visible 
(Zero value will be set to 90°) 

32-40 Maximum range (in nautical miles) to which vehicle is visible 
(Zero value causes this test to be ignored) 

51-58 Start time,   from midnight of start date 
(Zero value implies epoch is  start time) 
5 1-52 days 
54-55 hours 
57-58 minutes 

60-67 Stop time,   from midnight of start date 
60-61 days 
63-64 hours 
66-67 minutes 

The last card of this type must be followed by a card with the letters TR in 

columns  1 and 2. 

Column Load Sheet II       (Note:    This is not used for the Rise-Set-only 
option) 

1-2 Station Call Letters 
These must correspond to the letters on some card from Load 
Sheet I 
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7-25 An X in the appropriate column will cause the quantity listed 
above that column to be output.     (Only columns 7 through  14 will 
be written on ETAPE if that option is used.)   (See Line 36. ) 

7 Range  (n mi but written on ETAPE in ft) 

8 Azimuth (deg) 

9 Elevation (deg) 

10 Range Rate (ft/sec) 

11-14 P Dot,   Q Dot,   P,   Q - Doppler Data 

15 Azimuth Rate (deg/min) 

16 Elevation Rate (deg/min) 

17 Range Acceleration (ft/sec^) 

18 Mutual Visibility 
Output will be a list of numbers of the stations that are visible 
at the output time. 
(Stations are numbered in the order they are input on Station 
Location cards. )    There is a maximum of 8 stations. 

19 Latitude of vehicle (deg) 

20 Longitude of vehicle (deg) 

21 Surface Range from  station to subvehicle point (n mi) 

22 Altitude of vehicle (n mi) 

The following options require special input prior to the END cards: 

23 Doppler Rate = K X Range Rate 
K is  input into C(29) 

24 Look Angle 
This is the angle between an axis in the vehicle and the line of 
sight from the station to the vehicle.     The direction cosines of 
the vehicle axis must be in C(37),   C(38),   and C(39)-     These may 
be input as constant,   or the user may provide a subroutine called 
FANG that computes the direction cosines at each output point. 

25 Observation Variances 
The  standard deviations of the  six observational quantities R,   A, 
E,   R,   A,   E,   are output.     These are based on a variance- 
covariance matrix for trajectory parameters.     The matrix is 
input beginning in ATA(50 1) in lower triangular form (see Line 69) 
Corresponding parameters must be indicated in the CPRAM, 
DPRAM,   and OPRAM boxes (see Line 65). 
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Table 7.     TRACE -   Data Generation Input 

X-1 7090  INPUT  DATA AEROSPACE CORPORATION 
COMPUTATION & DATA PROCESSING CENTER 

PROGRAMMER. -KEYPUNCHED. 

1 7 73 

HI 

H2 

55 

-• 
20 
18 
5« 

26 
43 

17 
11 
BS 
71 

SYMBOL        ! 
6 

LOC. VALUE EXP. 

1 D ITIN 
2 I YEAR 
3 1 MNTH 
4 T DAY 
5 TZNE 
6 HR 

7 MIN 
8 SEC 

9 I ICTYP 

10 IC 

11 2 
12 3 
13 4 
14 5 
15 6 
16 DRAG 

17 I 2 
18 3 
19 4 
20 5 

CT « rn         • .2 en     o S 

2 » rt 5 "J • o &".o B c a< • a) J 3 N o 
21 D PRCDE MINIM! j 

22 I PRTIM 
23 I 2 
24 3 

25 4 
26 5 
27 6 
28 7 

29 
30 
31 
32 
33 IF LAG 

34 I 6 
35 1 7 

3i I ETAPE 

»0 

2 

36 
20 

01 

17 
38 
03 
71 

SYMBOL        | 
PR 

E 
LOC. VALUE EXP. 

37 B N6ISE 
38 D RPRAM Or 
39 D w 
40 D (3) _ 
41 PBIAS 
42 2 
43 3 
44 4 
45 

4$ 
47 
48 

49 SIGMA 

50 2 

51 3 
52 4 

53 
54 
55 
56 
57 REFR 
58 
59 
60 

61 
62 
63 
64 

65 D CPRAM 
66 D DPRAM | 
67 D 0PRAM | 
63 
69 ATA 

70 501 
71 
72 

73 
74 
75 
76 r 

kEROSPACE   FORM   2423 
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Table 8.     Data Generation Input Description 

1: Itinerary.   Specify order of compu- 
tations. 
1-Tracking data input,   2-Track, 
3-Trajectory only, 
4-Data generation, 
5-Error analysis 

2-8:        Epoch 

9:             Type    1 2 3 4 of initial co 
10-15:  IC          x 0 a t 

y 6 e 6 
z P l B (ft-sec-deg) 
*. A Q A 

y r u: r 
z V T V 

16: 
17: 

c 
18: 
19: 

20: 

NOTE:    If r is negative it is inter- 
preted as height;  if v is neg. ,   cir- 
cular velocity is computed and used. 
CJJA/W (ft2/lb) 
Atmosphere Model Specification 

0 ARDC 59 
1 Lockheed 
2 Paetzold II 
3 Paetzold I 
4 L. F. E. 
- solar  radio flux 
- planetary magnetic index 

37:        If non-zero,   the above tape will 
contain normally distributed random 
noise (mean values in PBIAS and 
standard deviations in SIGMA;   RPRAM 
specifies the bias parameters). 

38-40:Radar Parameter Specification 

ST R   A    E    R   T 
X to specify |    |     ) (3)   I     I     I      I       I      I 

ST:    Station Symbol R:  Range Bias 
®, ,     , A:  Azimuth Bias blank spaces _,    _. „.   _ c E: Elevation Bias 

R: Range Rate Bias 
T:  Time Bias 

41-48:Contains the mean values of the biases 
to be added to the observations specified 
in RPRAM. 

49-56:Contains the  standard deviations of the 
random noise to be added. 

57-64: Refractivity. 
65:       Initial Condition Parameter Specification: 

TYPE [X]   to specify: 

F 
A 

P 
g(a) 

1 x y z x Y z to 
2 Q 6 P1 A r V to 
3 a e l n OJ T to 

1 : 

- plasma intensity coeff. 

tr
a
je

c
to

ry
 

re
si

d
u

a
ls

 
p
a
rt

ia
ls

 
A

T
A
 A

cc
u
rr

 
V

ar
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E
q
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el
em

en
ts

 
co

n
st

an
ts

 
u

p
d

at
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z=
0;

S
=

90
 

o
b
s.
 t

im
es

 

X to print II II II II II Ml 

66-67JDifferential Eq.   Parameter Specification: 
X   to specify: 

CDA 

-^—   u    J2    J3   J4   J5    J21    J31 

DPRAM 

21: 

22-28:  Print at t=t   (At. )t, (At,). . . (At   )t    in o'     I'  1       2' n' n 
minutes from midnight if PRTIM = 1, 
from epoch if 0. 

J41    J22   J32   J42 

J33    J43    J44 L21    L31    L41 

23 - n ( <9), 

26 - t. 

24  - t   , o 
27 - At. 

25 - At OPRAM 

28 - t2, etc. 

34: 

35: 

36: 

1' 2* 
If non-zero,   rise and set times only 
will be generated. 
Inp»t control for station location 
and ephemeris cards. 
Tape number of BCD radar station 
and observation tape.   (If zero,   no 
tape is generated. ) 

J22 '32    L42 L 33 J43 ^44 

69-76:Covariance matrix in lower triangular 
form for parameters selected above. 

*This list applies if 0BJT = 4.    If (J)BJT = 3 
replace with shorter list J?l>   J3I'   ^22'  '^32"^33 

and L21,   L31,   L22.   L32,   L33.  If (t>BJT = 2 

replace with J2i,   J22 and L2j,   L22- 
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Table 8.     Data Generation Input Description 

1: Itinerary.   Specify order of compu- 
tations. 
1-Tracking data input,   2-Track, 
3-Trajectory only, 
4-Data generation, 
5-Error analysis 

2-8:        Epoch 

9:            Type    1 2 3   4 of initial coi 
10-15:  IC          x Q a   c 

y 5 e   6 
z P i    9 (ft-sec-deg) 
X A a A 
y r u:  r 
z V T    V 

37: If non-zero,   the above tape will 
contain normally distributed random 
noise  (mean values in PBIAS and 
standard deviations in SIGMA;   RPRAM 
specifies the bias parameters). 

38-40: Radar  Parameter Specification 

ST R   A   E    R   T 
X to specify I    I     I (3)   |     |     |      |       |      1 

ST Station Symbol R 

(3)blank spaces „ 

R 
T 

Range Bias 
Azimuth Bias 
Elevation Bias 
Range Rate Bias 
Time Bias 

16: 
17: 

c 
18: 
19: 

20: 

NOTE:    If r is negative it is inter- 
preted as height; if v is neg. ,   cir- 
cular velocity is computed and used. 
CJJA/W (ft2/lb) 
Atmosphere Model Specification 

0 ARDC 59 
1 Lockheed 
2 Paetzold II 
3 Paetzold I 
4 L. F. E. 
- solar radio flux 
- planetary magnetic index 

41-48:Contains the mean values of the biases 
to be added to the observations specified 
in RPRAM. 

49-56: Contains the standard deviations of the 
random noise to be added. 

57-64: Refractivity. 
05:        Initial Condition Parameter Specification: 

TYPE \T\   to specify: 

F 
A 

P 
g(a) 

1 x y z X V z to 
2 Q 6 P A r V to 
3 a e l 12 to T to 

1 
- plasma intensity coeff. 

C 

* *      u   . g 3 o » 
2 ni « "  o--£ c o- £ 

«S'5<    •  P • «»    -~ 

h a< > » u 3 s  o 

66-67JDifferential Eq.   Parameter Specification: 
X   to specify: 

CDA * -1jj—   u   J2    J3    J4   J5    J21    J31 

n> DPRAM 

21: X to print    |   I    I    1   I    1    I    iTTTD 
22-28:   Print at t=t   (At, )t, (At-,). . . (At   )t    in o*     11       2' n' n 

minutes from midnight if PRTIM = 1, 
from epoch if 0. 

J41    J22   J32   J42 

23 - n ( <9), 

26 - tj, 

24  - t o 
27 - At 

25  -   Atj 

,    28   -t2,etc. 

34: 

3 5: 

36: 

If non-zero,   rise and set times only 
will be generated. 
Input contiol for station location 
and ephemeris cards. 
Tape number of BCD radar station 
and observation tape.   (If zero,   no 
tape is generated. ) 

J3: J43 J44 Lzi L31 L41 
OPRAM 1 1 

L22 L32 ^42 L33 L43 L44 

1 1          1 
69-76:Covariance matrix in lower triangular 

form for parameters selected above. 

«This list applies if (J)BJT = 4.    If (J)BJT = 3 
replace with shorter list J2l»   ^31»   ^22' ^32'^33 

and L21,   L31,   L22,   L32,   L33. If QBJT = 2 

replace with J21,   J22 and ^-"21'   ^-"22* 

c 
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5. 2. 5 Error Analysis 

5. 2. 5. 1 Required Input 

Lines 29 through 36 - Parameter Specification Boxes 

29 D CPRAM 1 P P OP 

30 D DPRAM 3 P Q 
31 D OPRAM Q a 
32 D RPRAM A B P Q Q 
33 D 
34 

35 
36 

A P in a box causes  the corresponding parameter to be used as a "P" param 

eter.     A Q in a box specifies  that the associated parameter is a "Q" 

parameter. 
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Type 

CPRAM 

CPRAM - Initial condition parameters. The first box 
specifies the tvpe of initial condition. The succeeding 
boxes indicate the particular parameter desired. The 
boxes are ordered as follows: 

i X y z X y z t 
O 

2 Of g B A r V t o 

3 a e l 0 in T t o 

DPRAM and ())PRAM -  Differential equation parameters 
The boxes are ordered as follows: 

DPRAM Drag]    |i   I J? 

1          1 
J3 ^ J5 J21 J31 J41 J22 J32 J42 

<|>PRAM j     ;J    ! J J33    1J43 I    44 hi X31 X41 X22 K32 X42 X33 X43 ^44 

RPRAM - Radar parameters. The first two boxes of each 
Tine contain the station name. The succeeding boxes indi- 
cate the particular parameter desired. They are ordered 
as follows: 

RPRAM A       R A R 

where 

L = Latitude 

i    =  Longitude 

A =  Altitude 

R = Range Bias 

A = Azimuth Bias 

E = Elevation Bias 

R = Range Rate Bias 

T =  Time Bias 

u  = "u" Bias 

v  = "v" Bias 

'This list applies only if the full set is used.     See the appendix for 
explanation of standard set. 
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Additional cards may be added for more radar stations.    Note:    The number 

P's plus the number of Q's in CPRAM + DPRAM + (|)PRAM must be  < 15.    The 

total number of P's plus Q's must be < 30. 

Lines 37 through 44  - Sigmas 

37 SIGMA 100 
38 2 . 05 

39 3 . 05 

40 10 50. 
41 12 120 
42 13 . Co 

43 14 . 06 

44 21 60. 

Sigmas are the weighting factors for the radar observation partials.    Each 

sigma is a standard deviation for the particular observation type and station. 

A set of radar sigmas consists of values for R,   A,   E,   R,   P,   Q,   P,   Q, 

u,   v,   r:   in that order,   in feet,   degrees,   and seconds,    I sets may be entered, 

1 = 0,   1,   2,   . . . ,   9.     This value of I is the one to be entered on the Station 

Location Card,   column 5.    Additional cards may be inserted here if necessary, 

5. 2. 5. 2 Optional Input 

Line 45 - Covariance Output Specifications 

(If any covariance matrix output is desired the eighth box,   labeled 
"update," of PRCDE must be checked. ) 

5 IDIPRCOVIXI ID! lx D D 

An X in a box specifies that the whole covariance matrix be output.    A D in 

a box causes only the square roots of the diagonals to be output.     The boxes 

are ordered as follows: 
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PRCOV 

Line 46  - Additional Option Box 

46 ID OPBCbX xx 

A B C 

An explanation of the purpose of each box follows: 

<j)PB<|)X 

A. 

B. 

C. 

If "A" box contains an X the dP/dQ will be printed. 
T If "B" box contains an X the A   A print will be omitted. 

If "C" box contains: 
T 1 ,   the A   A will be punched. 

T 2,   the partitioned A      A     matrix will be punched. 

Lines 49 through 60  -  C(Q)  Covariance Matrix Input 

49 C(|)VO . 01 
50 2 . 01 

51 3 . 01 
52J 4 1 5. 
53 5 5. 
54 6 2500. 
55 
56 

These  covariance matrices include the  "Q" effects. 
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COVQ contains the variance-covariance matrix of the "Q" parameters,   which 

are specified in CPRAM,   DPRAM,   OPRAM.   and RPRAM.    The matrix is 

input in lower triangular form.     For example,   if there were  3 Q's specified, 

the matrix would have the form: 

This matrix is input into COVO in the  order: 

Lines  61  and 62 -  Station  Location and Data Specification Input 

Option for Multiple  Cases'1* 

61 
62 1 IF LAG 

I 7 1 

If IFLAG(7) is: 

c 

-1        Input all Station Location and Data Specification Cards 

0 No input - values are the  same as previous case 

1 Input Data Specification cards only; station locations are the 
same as previous case. 

This option applies to "multiple" cases (that is,   1TIN = 555 . . . ),   but not to 
'stacked" cases (successive cases for each of which ITIN = 5). 
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T T     •-1 Line 63  - A   A or (A   A)       Input Option 

I 63   11115 ]l 

If IFLAG (15) is: 

T - 1 Hold A   A from previous case 
T 0 No A   A or inverse input 

1 Input A-*-A into ATA area,   as augmented upper triangular matrix 

2 Input inverse into ATA (501) area,   as lower triangular matrix. 

5. 2. 5. 3 Station Location Data 

Column 

1-2 ST 
Two letters,   which serve as identification for a station. 
No two stations should have the same symbol 

5 Type  of radar observation sigma to be applied to data from this 
station 
The  sets of sigmas  input with the Basic Data are numbered 
(from 0 to 9) in the order in which they are  read in (see Lines 37 
through 44). 

6 Not used for Error Analysis 

9-17 North latitude of the  station in degrees 

19-27 East longitude of the station in degrees 

29-36 Altitude of the station in feet 

38-39 If this   station  reports P or P data (Q or Q),   these columns 
(41-42) contain the two letter symbols for the associated station(s) 

of the tracking configuration.    Each such associated station 
musl appear on a  separate  Station Location card,   but it is  not 
necessary for columns 38 through 42 to be filled out on the 
latter. 

The last   Station Location card must be followed by a card with the letters 

TR in columns   1  and 2.     There may be up to 50  stations  entered. 

5-44 



5.2.5.4 Data Specification 

Load Sheet I 

Column 

1-2 Station Call Letters 
These must correspond to the letters on some Station Location 
card 

9-16 Interval,   in minutes,   at which data for this  station is to be 
gene rated 

18-23 Minimum elevation at which the vehicle is visible 

25-30 Maximum elevation at which the vehicle is visible 
(Zero value will be   set to 90°) 

32-40 Maximum range (in n mi) to which vehicle is visible 
(Zero value causes this test to be ignored) 

5 1-58 Start time,   from midnight of start date 
(Zero value implies epoch is start time) 
5 1-52 days 
54-55 hours 
57-58 minutes 

60-67 Stop time,   from midnight 
60-61 days 
63-64 hours 
66-67 minutes 

The last card of this type must be followed by a card with the letters TR in 

columns  1 and 2. 

Load Sheet II 

Column 

1-2 Station Call Letters 
These must correspond to the letters on some card from 
Load Sheet I. 

7-18 An X in the appropriate column will cause the  quantity listed 
above that column to be computed and used internally. 

The last card of this type must be followed by a   card with the letters TR in 

columns   1  and 2. 

The only limit on the number of cards using these formats is that at most fifty 

different stations are allowed. 
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Table   13.     Error Analysis Input   Description 

1: 

2-8: 
9: 
10-15: 

Itinerary.   Specify order of computa-   3j. 
tions. 
1-Tracking data input,   2-Track, 
3-Trajectory only 
4-Data generation 
5-Error  analysis 
Epoch 
Type    1    2    3    4   of initial conditions.    32-36: R 
IC 3T~ 

16: 
17: 

i 
6 
P (ft-sec-deg) 
A 

Extension of Diff. Eq.   Parameter 
Specification 

JPJ   Parameter to be solved for. 
|Qj   Parameter considered in error 

J33J43J44L21L31L41L22L32L42L33L43L44 
i i i i i  i  i   i  i  i m 

lar Parameter Specification. 
|Pj   to solve for 
Qj   parameter in error 

S T L £   ARAERTuv 

NOTE: If r is negative it is inter- 
preted as height;  if v is neg. ,   cir- 
cular velocity is computed and used. 
CDA/W.     (ftZ/lb) 
Atmosphere model specification 

0 ARDC 59 
1 Lockheed 
2 Paetzold II 
3 Paetzold I 
4 L.F.E. 
- solar radio flux 
- planetary magnetic index 
- plasma intensity coeff. 

21: 
22-28: 

29: 

30: 

F 

g&) 

ST: Station Symbols     R:  Range Bias 
L:   Station Latitude     A:  Azimuth Bias 
V.    Station Longitude E:  Elevation Bias 
A:   Station Altitude      R: Range Rate Bias 

T:   Time Bias 
u:   "u" Bias 
v:   "v" Bias 

37-44: Sigmas 
(R.A, E,R,P,6,P, O.u, v, r) 
1 = 0,   1,   2 9 
I is the sigma type as  referred to by the 
Station Location Data. 
Covariance Matrix Output Specification. 

ß3   in box for whole matrix 
(SI   in box for sq. rt.   of diagonals 

I 

45: 

M    "   "J  \* 
C T3 

a 

O 
X~ [if 

o 
of 
u O U 

N 
OH 

O o 

IN 

lit 
J 

IcJ 

ft 
u 

IN 

U 

•*-• 

H 
J 

46: 

1 
,,etc. 

X to print  M    I    1   I    I    I   1   I    I    I   I  I 
Print at t=t   (At.)t   (At^). . .(At  )t    in 
minutes from midnight if PRTIM=1, 
from epoch if 0. 
23 - n(< 9),     24 -  t   ,       25 -  At, 
26 _ t,, 27 -  A°?,    28 - t 

Initial Condition Parameter Specifi- 
cation 
tj   Parameter to be solved for. 
Ö Parameter considered in error. 

Type 
1 xyzxyzt 
2 a   6    B   A   r   v   t° 
3 a   e   i    Q   «   T   t 

ii MM n5 
Differential Equation Parameter 
Specification 

FJ   Parameter to be solved for. 
3   Parameter considered in error. 

Option Boxes:    The form is: 
OPBOX  IA1B |C| 
A.   If "A" box contains an X the 3P/BQ 

will be printed. T 
If "B" box contains an X the A   A 
will not be printed. _, 
If "C" box contains:  1,   the A   A will 

B. 

C. 
be punched;  2,   the partitioned A   •'•A 
will be punched 

49-60: C(O) covariance matrix in lower tri- 
angular form. 

62: Input control for station location and 
ephemeris cards. 

63: ATA or  (A^A)   l 

-1, 
0, 
1, 

input option, 
hold A1 A from previous case 
no A'Aor inverse input 
input ATA into ATA area 

2,   input inverse into ATA(501) area. 

* or shorter list depending on (pBJT 

'-§- ^ J2 J3 J4 J5J2*1 J31 J41 J22 J32J42 
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5.2.6 Deck Setup 

TRACE may be  run from either binary cards or tape.     This  section describes 

the setup,   from the user's point of view,   of each mode,   indicates how to pro- 

duce  a program tape,   and explains the use of the dummy routines   provided 

with the deck. 

5. 2. 6. 1 Running from Tape 

At this point it is necessary to introduce REIN, a single program with only 

one function: to read CHAIN (the first link of TRACE) from some specified 

tape and thus  initiate execution from this tape. 

When a binary program tape is  available,   the input setup is  as  shown in 

Figure   16.     REIN can be considered a loader,   which calls  CHAIN from 

logical unit 8 (A-8 with the present Aerospace Unit Table).     REIN must be 

reassembled if any other unit is desired. 

All comments below pertaining to the deck organization when running from 

cards are applicable to tape also,   as every execution from cards first pro- 

duces (and then uses) a program tape. 

When using a previously written tape, it is not possible to compile and then 

use any program other than REIN 

Figure   16.      Running   from Tape 
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5.2.6.2 Running from Cards 

5.2.6.2.1     Arrangement of Deck 

The complete program consists of five links:    CHAIN,   TRAIN,   MAIN,   GAIN, 

and FEIGN.     (Use of REIN applies to execution from tape only. )   A standard 

all-purpose deck would look like Figure  17. 

Arrows indicate positions of symbolic 
programs and/or Debug cards to be 
used with: 

Fieure  17.    Running from Cards— Complete Deck 
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For various reasons,   a variety of smaller decks or tapes may prove more 

desirable.    It is necessary to include,  for any given run,   only those links 

to be executed during that run.     The types of execution and the links that 

each require are: 

Tracking CHAIN, TRAIN,   MAIN 

Trajectory only CHAIN, MAIN 

Data generation CHAIN, GAIN 

Error analysis CHAIN, FEIGN 

Some economy in tape-handling results from the use of shorter decks  in 

production work. 

The input quantity,   PTAPE =  11,  must be included in the Basic Data when 

running from cards (see paragraph 5. 2. 6. 2. 2). 

If symbolic cards for compilation are to be included,   they must immediately 

follow the CHAIN control cards and precede the DEBUG cards (if any),   for 

the appropriate link.     In this connection,   it is usually worthwhile,   but not 

necessary,   to remove the corresponding binary program from the link. 

5.2.6.2.2    Producing a Tape 

While it is true that every run from cards automatically produces a program 

tape, a short explanation of the CHAIN control card preceding each link may 

clarify the process. 

The card 

* CHAIN (I, B3) (I =   1,   2,   3,   . . .) 

assigns the number I to the link it precedes,   and directs the FORTRAN 

monitor to store this program on tape B3. 

Execution begins,   after each program has been stored on the tape designated 

by its control card,   by reading back in the (physical) first link of the deck; 

this must,   therefore,   always be CHAIN.    If the tape number (in this case,   B3) 
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is the same on each control card,   a binary tape of TRACE is then available 

by simply saving B3.     When source programs  are included with the binary 

cards,  the result of the compilation appears on the tape. 

Links are brought into core by programming in TRACE,   which assumes them 

to be on the tape designated by the input quantity PTAPE.     PTAPE is set,   in 

REIN,   to 8,   and does not have to be read during a normal run from tape. 

When using cards,   however,   PTAPE must be input.    It must equal  11 unless 

the control cards are changed (B2 and A4 are the only other units FORTRAN 

will recognize for this purpose at present); or a unit table is employed in 

which B3 does not equal 11. 

5. 2. 6. 2. 3    Dummy Routines 

For some purposes,   it may be desirable to increase the amount of core 

storage available for data handling. 

Since TRACE contains many options,   not all of which are usually executed 

in any one  run,   there are always a certain number of extraneous  subroutines 

present.     (For instance,   only one integration routine is ever in use during 

any trajectory.)    These routines may be replaced with one-word "dummies" 

if mere storage cells are needed.     (In replacing cards,   it should be noted that 

the TRACE programs,   and then the library routines,   are alphabetical within 

each link. ) 

A list of a few subroutines of appreciable size that might be dummied are 

given here as  an example. 
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Link 

MAIN 

Routine 

SDUMP 

DXDA 

DXDRSR 

PATTY 

PTRAJ 

REST 

REST1 

AMRK 

COW 

When It Is  Unnecessary 

No dump required 

No analytic partials 

DXDA being used 

No accumulated normal 
matrix output 

No trajectory output 

BLIST ( constraints)   not used 

it        ii 

Gauss-Jackson integration 
used (COW) 

AMRK used 

Approx. No.  of Words 

150 

400 

350 

400 

170 

260 

215 

390 

1100 

5.2.6.3 Data Deck Setup 

All types of runs  require input of BASIC DATA followed by the END BASIC 

card.     ITIN determines  what further input is  required. 

If ITIN = 

Read 

1 

(TRAIN) (GAIN) (FEIGN) 

Tracking Data Input      Data Generation      Error Analysis 

Station Location 1st 2nd 2nd 

Radar Observation 2nd 

Data Specification 
I and II 

3rd 3rd 

END DATA Card 1st 1st 

t 

ITIN =  2,   3,   requires only an END DATA card. 

There is one exception to the above chart.     If two or more GAIN or FEIGN 

runs are run in the same ITIN sequence,   the Station Location and Data 

Specification cards are normally read the first time only.    (See pages 5-28 

and 5-43.) 
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Figure  18 shows an input deck for a single trajectory. 

["END DATA 
!    END BASIC       s 

/    BASIC DATA/ 
l —-   <( 

Figure  18.    ITIN = 3,   Trajectory Only 

For two successive trajectories the deck in Figure   18 should be followed by 

the one in Figure  19. 

END DATA 

/    Changes to        L 
1  BASIC DATA    / 

Figure   19.    ITIN = 33,   Two Trajectories 

The input deck for a standard tracking  run with observation cards  is  shown 

in Figure  20. 

|    END DATA" 
/RADAR 

/OBSERVATTQ 

"STATION A 
LOCATIONS 

END BASIC 

BASIC DATA // 

:DATA 

Figure  20.     ITIN =   12,   Tracking Input and Run 
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For a tracking run followed by data generation,   the above deck should be 

followed by Figure 21. 

JBSEF 
Ä~TA~ 

II ICATIOICT 

SHi-:c;iFicAT.iQiyi 

STATION"" 
LOCATIONS 

/ 

f 

/ 

END DATA 

Figure 21.    ITIN =   124,   Tracking Run Plus Data Generation 

Data generations and error analyses are run from input decks of identical 

structure,   as in Figure 22. 

DATA AA 
SPECIFICATION^!   • 

DATA /^>\ 
/SPECIFICATION 
r —•— / t 

/STI 7> •\TION 
LOCATIONS//    : 

END DATA 

END BASIC 

'BASIC DATA 

r 
*DATA 

— 

Figure 22.    ITIN = 4 or 5,   Data Generation or Error Analysis 
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5. 3 OUTPUT 

Each link,   or type of computation,   chosen in TRACE provides two types of 

programmed output.     First,   there are those headers and quantities that are 

a function only of the link being executed and are not controlled by input 

options.     Second,   there is output which must be specifically selected through 

the input quantities PRCDE,   PRTIM,   and some of the tape parameters.     A 

third possible type of output is available,   to anyone sufficiently familiar with 

the program,   by use of the FORTRAN DEBUG capabilities. 

The first two kinds of output can best be described by means of examples. 

Fifteen sample printouts are included at the  end of this  section. 

5.3.1 Examples   1 and 2 (CHAIN) 

The  output from CHAIN is all of the first type  and appears  on every run. 

The first 26 lines are the BCD card images of the FINP input.    Inclusion of 

a card with the symbol CLOCK in columns 7 through 1 1 will cause the time 

(in hundredths of a minute),   at which this card is read,   to be output.    Printing 

of the input cards may be eliminated by removing the special versions of sub- 

routine (CSH)S from the binary deck.     Any error printout indicates that the 

last card was  either punched incorrectly,   includes a symbolic location not in 

the  FINP list,   or is not a Basic Data card. 

5.3.2 Example  3  (TRAIN) 

TRAIN output is  not input-controlled and is produced whenever a tracking 

run is executed.     Example 3 is the result of specifying station location and 

radar observations  on cards,   along with the normal input deck.     If a binary 

radar data tape had been read,   TRAIN output would not include the observa- 

tional data. 

There are several possible error messages. In Example 3, a mispunched 

card, redundancy in reading the BCD tape, and inclusion of an observation 

from a station for which there is no station location card,   would all produce 
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the same effect.    An appropriate line of output is printed,   the observation 

(or station) in question is deleted,   and execution continued.    Redundancies 

in reading the binary data tape would cause this information to be printed 

and execution terminated. 

5.3.3 Examples 4,   5,   6,   and 7  (MAIN -  Trajectory Only) 

All output from MAIN during a trajectory run,   with the exception of the 

initial conditions,   must be selected through the input quantities  PRCDE and 

PRTIM. 

Example 4  results from the request that the  constants in use in the program 

be printed out. 

Example 5  shows trajectory output;  Example 6,   the variational equations; 

and Example 7,   the  elements.     In these examples,   the three kinds  of output 

are shown singly; any two,   or all three,   could have been given at the  same 

time just as easily.     However,   it is not possible  to request one type of output 

at one  sequence of times and another  type at another sequence during the 

same trajectory. 

5.3.4 Examples  8,   9,    10,   and   11  (MAIN -  Tracking) 

When using TRACE as a tracking program,   MAIN produces both input- 

independent and input-controlled output. 

The first type  consists  of the initial conditions,   and,   for each iteration, 

something  similar to Example 8.    The legend,   CURRENT SOLUTION IS NOT 

GOOD,   indicates that the previous solution has caused the rms of the residuals 

to increase.     The program therefore will decrease the bounds,   return to the 

last good solution,   and  re-solve,   using the  corresponding normal matrix. 

CURRENT SOLUTION IS BEST SO FAR is a signal that the rms has decreased 

and that the bounds will be increased for faster convergence.     SIGMA 

(PARAMETERS)/SIGMA (NORMALIZED DATA) is the square root of the 

diagonal of the inverse normal matrix. 

w 
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The input-controlled output includes everything that can be obtained during 

a trajectory-only run (see paragraph 5. 3. 3), plus four additional computa- 

tions . 

Example 9 shows the STATION-BY-STATION SOS (square root of the sum 

of the squares of the residuals after division by the appropriate radar sigmas) 

This is printed once per iteration and is limited,   at present,   to nine stations. 

Example 10 gives the measured-minus-computed values of the radar residuals 

If a time bias is included from one or more  stations,   the output time will be 

biased. 

The partials of the radar observations,   with respect to the parameters being 

solved for,   appear as in  Example   11.     This may be  requested along with,   or 

independently of,   the  residuals (Example   10).     The units  of the partials are 

in earth-radii and radians; (all other output is  in feet and degrees,   or any 

other  system specified using the non-standard input); these quantities are 

output before the division by the radar sigmas. 

5. 3. 5 Examples   12,   13,   14,   and 15 (GAIN - Data Generation) 

All the output illustrated in paragraph 5. 3. 3 is also available during a data 

generation.     Besides this,   there are three additional types of output: 

Example  12 shows the station locations and data specifications. 

Example  13 is a result of choosing to employ GAIN in the Rise-Set-Only 

mode. 

Example 14 shows the various types of data that the program can produce. 

5. 3. 6 Example   15 (FEIGN -  Error  Analysis) 

All the output illustrated in paragraph 5. 3. 3 is also available  for an error 

analysis (FEIGN) run.     Example  15 illustrates the type of output obtainable 

by input control.     Any combination of the matrices may be  selected as output 

a 
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by option.     Only the  square  roots of the diagonals of the covariance matrices 

may be specified as output,   if desired.    Printout occurs at the times specified 

by PRTIM. 

5.3.7 Other Output 

There are three additional means of acquiring output,   but since each requires 

more familiarity with the programming of TRACE,   they will only be mentioned 

here. 

First,   the  FORTRAN DEBUG system may be used.     All binary routines  com- 

piled from FORTRAN source decks are preceded by their  symbol table,   and 

almost all information of interest can be dumped from COMMON. 

Second,   the source prograris themselves may be modified and recompiled. 

Third,   core dumps may be obtained in case of trouble or at the end of a run. 

To this end,   each link contains,   as its first program,   a copy of SDUMP.    A 

suitable manual transfer (to a location dependent on the version of FORTRAN 

in present use) will automatically produce an octal dump. 
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APPENDIX 

Standard Values of Constants and Parameters 

Included in this appendix are lists of the contents of the arrays OBJZ, 

OBJT,  OBLT,  INTEG,   C,   NUMB,   and IFLAG.     The first three contain the 

earth gravitational moc el used; INTEG contains the numerical integration 

parameters; C contains various constants.     The non-zero values given for 

these arrays comprise a 'standard1 set of values to be input.     The two arrays 

NUMB and IF LAG contain many items that are equivalent to input items 

described in Section  5.    There are also additional items that the user may 

want to alter. 
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